Operating Instructions

Reverse-Osmosis-Systems UO 600/900/1200/1500 ND

Overview of contents

General information	Α
Transport and storage	В
Technical data/ product description	C
Set-up and assembly	D
Placing the system in service / taking it out of service	Ε
Operation / monitoring	F
Malfunctions	G
Maintenance	Н
Preserving/Cleaning the system	- 1

Appendix

-	R+I flowchart with components list	I
-	Circuit diagram	П
-	Control system manual	Ш
-	Operating Instructions for individual components	IV

Imprint

All Rights Reserved.

The edition date on the cover sheet is definitive. Subject to technical changes.

These Operating Instructions may not be translated into foreign languages, reprinted, saved on data media or otherwise duplicated except with the express written approval of the manufacter.

Contents of Chapter A

1	. Notes on using the Operating Instructions	. 2
2	. General safety information	. 3
	2.1 Explanation of symbols and references	. 3
	2.2 Additional safety requirements	. 3
	2.3 Usage in accordance with intended purpose	. 3
	2.4 Operating staff	. 3
	2.5 Residual dangers	. 4
	2.6 Bringing the system to a stop in the event of an emergency	. 4
	2.7 Safety information for maintenance tasks	. 4
	2.7 Disposing of system parts and operating materials	. 4
	2.8 Unauthorized conversion and manufacturing replacement parts	. 4
	2.9 Warrantee claims and liability	. 4
3	. Basic principles of reverse osmosis systems	. 6
	3.1 The principle of reverse osmosis	. 6
	3.2 Calculation equations	. 6
	3.3 Temperature dependency of permeate output	7

1. Notes on using the Operating Instructions

Purpose: The Operating Instructions are intended for users of the system and

contain information on how to operate and maintain the system

safely and reliably.

Availability: The Operating Instructions must always be available at the place

where the system is in use.

Subdivision: The Operating Instructions consist of a number of chapters named

by letters of the alphabet. An outline of all the chapters appears on

Page 1.

The header and page numbering, along with the letter identifying

each chapter, make it easier for you to orient yourself.

For information on the content of a specific chapter, please refer to

the contents on the first page of that chapter.

Conventions/ abbreviations: OI Operating Instructions

TD Technical Documentation

RO Reverse Osmosis

Permeate Product water resulting from RO

Product water from the UP system

Cy Conductivity

- Enumerated items

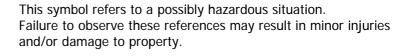
Steps to be performed

2. General safety information

2.1 Explanation of symbols and references

Danger

Warning



This symbol refers to an immediate danger that threatens the safety and life of persons.

Failure to observe these notices will have severe consequences on health and safety, including life-threatening injuries.

This symbol refers to a possible danger that threatens the safety and life of persons.

Failure to observe these notices may have severe consequences on health and safety, including life-threatening injuries.

This symbol points out important information for working with the system in a proper manner.

Failure to observe these references may result in malfunctions in the system or disturbances in the environment.

2.2 Additional safety requirements

Country-specific requirements, standards and regulations must be observed.

2.3 Usage in accordance with intended purpose

The RO-system is used to desalinate softened water. The system must only be operated with water supplied in accordance with the quality described in Chapter C/2 and the operating parameters specified there.

The system must not be operated unless it is in proper working order. Any malfunctions must be rectified immediately.

2.4 Operating staff

Only persons who have read and understood these Operating Instructions are permitted to operate the system. When operating the system, it is particularly important to observe the safety information strictly.

2.5 Residual dangers

- Water damage

 To avoid accumulation of spills caused by leaks, the area in which the system is set up must be equipped with a floor drain and/or a leak monitoring system and corresponding alarm.

- Flectrical shock

- Do not touch electrical components with wet hands.
- Before performing tasks on parts of electrical system, disconnect the system from the power supply.

- Mechanical force

Parts of the system are under excess pressure of up to 25.
 Release the pressure from the system before repairs and maintenance tasks.

2.6 Bringing the system to a stop in the event of an emergency

- Turn off the main switch
- Shut off the water supply

After remedying the damage:

- Open the water supply
- Turn on the main switch

2.7 Safety information for maintenance tasks

The operator must take pains to ensure that all maintenance, inspection and assembly tasks are performed by authorized and qualified professionals who have been sufficiently informed for the task at hand by thoroughly studying the Operating Instructions. These tasks must be properly performed by professionally trained staff members.

The system must be shut down and protected from being placed in operation again unintentionally before all repair and maintenance tasks. It is absolutely essential to observe the procedure described in these Operating Instructions for shutting down the system.

Before beginning tasks on the electrical equipment of the system, a check must confirm that power has been disconnected from the corresponding section of the system. In addition, the system must be secured to prevent it from being turned on again unintentionally.

Protective clothing suitable for the hazard at hand must be worn while performing the task.

2.7 Disposing of system parts and operating materials

When they need to be discarded, system parts must be disposed of according to local requirements including separately if so required.

2.8 Unauthorized conversion and manufacturing replacement parts

Conversion or modification of the system is only permitted with the approval of the manufacturer. The same applies to making changes in the programming for the control system. Original replacement parts and accessories authorized by the manufacturer enhance safety. Use of other parts will void the warrantee.

2.9 Warrantee claims and liability

This product corresponds to the state of the art and was designed and manufactured in accordance with applicable rules of the technology, after which it was subjected to a quality control process. If there should nevertheless be any grounds for complaint, please direct requests for replacement to the manufacturer of this product in accordance with the general terms and conditions of sale and delivery.

3. Basic principles of reverse osmosis systems

3.1 The principle of reverse osmosis

Osmosis is a process on which nearly all natural metabolic processes are based. If two solutions of varying concentrations are separated in a system by a semipermeable membrane, the solution with the higher concentration will always have a tendency to become more diluted. This process (osmosis) will continue until osmotic equilibrium is achieved.

In the process of reverse osmosis, the direction of the osmotic flow is reversed. To achieve this, pressure must be exerted on the concentrated solution. This pressure must be considerably greater than the osmotic pressure that arises due to the natural balancing of differing concentrations.

Synthetic membranes are used in water treatment systems that work on the principle of reverse osmosis. These membranes are permeable for water molecules. The content materials dissolved in the water are held back by the membranes. High pressure causes the concentrated solution (for example drinking water or process water) to flow through these membranes. The result is a separation of this solution into a partial flow with water in which the content materials that are held back are located (concentrate).

3.2 Calculation equations

Yield [%] =
$$\frac{\text{permeate output [I/h]} \cdot 100\%}{\text{feed water input [I/h]}}$$

feed water input = Permeate output + concentrate output

Concentrate output [I/h] =
$$\frac{\text{permeate output [I/h]} \cdot 100\%}{\text{yield [\%]}}$$
 - permeate output [I/h]

Desalinization rate [%] =
$$[1 - \frac{Cy_{permeate}}{Cy_{raw water}}] \cdot 100\%$$

3.3 Temperature dependency of permeate output

The permeate output of the system depends on the temperature of the feed water. The nominal output specified in the technical data and on the rating plate refers to the design temperature specified in Chapter C/2.

The actual output at a specific feed water temperature can be calculated from the following table using a correction factor.

The specific temperature-related permeate output can be calculated according to the following calculation equation:

Permeate output at X °C = Rate output • Correction factor F

T in °C Correction factor

Design temperature	Nominal output = 100%	1.00
-1		0.96
-2		0.92
-3		0.88
-4		0.84
-5		0.80
-6		0.77
-7		0.74
-8		0.70
-10		0.67
-11		0.64

If the system is operated at a higher feed water temperature than the design temperature, care must be taken not to exceed the maximum permeate output that is specified on the rating plate and in the technical data (C/2)!

After switching on the RO system permeate with high conductivity is produced for a short time. Therefore it is to be made certain during the interpretation of the peripheral equipment technology that a minimum running time of the RO system of at least 30 min per shifting process is ensured.

1. Transport and storage

- Systems of type RS and RSE, ND,KR, AS, ES, combi, ED,NF, UP and EP should be transported upright.
- Systems of type W should be transported lying down.
- Systems of type W/S may be transported either standing or lying down.

- During transport, all systems must be secured against slipping and falling over!
- The transport weight corresponds to the empty weight. For transport weights, please refer to the Technical Data in Chapter C/2.
- The system can be damaged by frost. Because of this, the system must be protected against frost and freezing during transport and storage.
- The maximum storage temperature is 40°C.
- The maximum storage duration for the system in original packing is 3 months at 20 °C. After that, the preservative fluid must be rinsed out and replaced if necessary.

Contents of Chapter C

1	Technical data	2
2	Usage limits	3
3	Product description	3
	3.1 Rating plate	3
	3.2 Working principle diagram	3
	3.3 Functional description	3
	3.4 Short description of the components	4

1. Technical data

System		UO 600 ND	UO 900 ND	UO 1200 ND	UO 1500 ND
Code No.		381 101	381 111	381 121	381 131
Control			RO	1000	
Feed water specification					
Feed water pressure min./max.	bar		2	2/6	
Pressure fluctuations (limit)	bar		<u>±</u>	0.5	
Temperature min./max.	°C		5/	/35	
Connections					
Feed water	DN		2	20	
Permeate	DN		2	20	
Concentrate	DN		2	20	
Power consumption	kW		2	2,2	
Power connection	V/Hz		3x40	00/50	
Protection type			IF	P54	
Output data					
Permeate outlet max.	l/h	600	900	1200	1500
Concentrate min.	l/h	200	300	400	500
Concentrate backflow	l/h	1000	800	600	500
Pump pressure max.	bar		20		18
Permeate counterpressure max.	bar	0.3; without permeate backflow!			
Recovery	%	75			
Salt rejection rate	%	97			
Dimensions and weights					
Dimensions (HxWxD)	mm	1650x660x690			
Weight approx.	kg	135	150	180	195
Environmental data					
Max. ambient temperature	°C	40			
Relative humidity (air)			<95%, non	-condensing	

Systems are designed for softened drinking water without chlorine in accordance with the German Drinking Water Regulation with a salt content of 1000 mg/l and at a feed water temperature of 15 °C.

2. Usage limits

The limit values specified in Chapter C/2 "Technical Data" apply for usage of the system.

3. Product description

3.1 Rating plate

The rating plate is located on the front side of the system. It contains important information on the output and maximum operating parameters of the system.

To ensure fast and problem-free processing of warrantee claims, technical information or customer service, be sure to indicate the system type, item number and manufacturing number!

3.2 Working principle diagram

See the R+I diagram in the appendix

3.3 Functional description

Softened feed water is fed in through a fine filter (5 µm filter unit) to the circuit pump unit. This unit pumps the water through the semipermeable membranes at high pressure. As a result of the high pressure, some of the water diffuses through the membranes. The result is purified water that is almost completely free of salts, colloids, germs and pyrogens. This water, which is led off, is referred to as the permeate. The salts that are held back are continually rejected into the wastewater channel with the RO concentrate. To arrive at a more economical yield and to cause water to flow over the membranes optimally, part of the concentrate is directed back in front of the membranes.

3.4 Short description of the components

Hardness monitoring device (1X02) (Option)

Continuously monitors soft water quality and generates an alarm

message if a limit value is exceeded.

Pressure gauge filter inlet (1Pr01)

Display of the inlet pressure.

Fine filter (1F01) Protects the RO membranes from impurities

(filter fineness 5µm).

Pressure gauge filter outlet (1Pr02)

Display of filter outlet pressure.

Sample removal tap for feed water (1V07)

Used to remove samples from the feed water of the system.

Inlet solenoid valve (1V01)

Is always open during permeate production.

Pressure switch (1Pr03) Monitors the inlet pressure.

Pump (1P01) Produces the pressure required for the reverse osmosis process.

Pressure gauge pump pressure (1PR04)

Display of the pump pressure.

Pressure gauge operating pressure (1Pr05)

Display of the operating pressure.

Rinse connection, inlet (option 1V10)

Makes it possible to connect to a cleaning station.

Pressure gauge (concentrate pressure) (1Pr06)

Display of the concentrate pressure.

Rinse connection for concentrate (option 1V12)

A 3-way ball cock used as a discharge for cleaning the system.

Concentrate regulating valve (1V06)

Used to set the amount of concentrate to be led away.

Concentrate rinse valve (option 1V03)

Used to force concentrate.

Flow meter for concentrate (1FI01) Display of the RO concentrate quantity.

pressure regulating valve (1V05)

Controls the amount of concentrate directed in front of the pump.

Flow meter for concentrate recirculation (1FI03) (if existing)

Display of the RO concentrate recirculation quantity

Permeate measurement cell (1Q02)

Measures the conductivity of the permeate. The control system is used to turn off the system if a limit value is exceeded.

Permeate flow meter (1FI02)

Displays the permeate flow level.

(option 1V11)

Permeate rinse connection A 3-way ball cock used as a discharge for cleaning the system.

Control system

Monitors and controls all important functions during the operation of the system.

Contents of Chapter D

1. Set-up	
1.1 Requirements for the set-up location	
1.2 Setting up the system	2
2. Water-side connections	3
2.1 Necessary qualifications of the assembly staff	3
2.2 Making the hydraulic connections	3
3. Electrical connection	4
3.1 Necessary qualifications of the assembly staff	4
3.2 Connecting the power supply	4
3.3 Connecting the accessories / signal exchange	4

1. Set-up

1.1 Requirements for the set-up location

- The space required for the system may be derived from the measurements specified in Chapter C/21. In addition, there should be 1 m of space on each side available for operating and maintaining the system.
- The room in which the system is set up must meet the environmental conditions specified in Chapter C/2.
- The minimum bearing capacity at the set-up location must be 150% of the operating weight specified in Chapter C/2.
- The set-up surface must be even and run horizontally.
- The room must be well ventilated and not exposed to freezing temperatures.
- To avoid accumulation of spills caused by leaks, the area in which the system is set up must be equipped with a floor drain and/or a leak monitoring system and corresponding alarm.
- The necessary electrical connections must be available on the construction side (see Chapter C-1) and must be located no more than 2 m away from the system.

1.2 Setting up the system

- Unpack the system.
- Check over the delivery for completeness and transport damage. (See Chapter C-3.2 for scope of delivery). Any deviations or damage must be reported to the manufacturer immediately.
- Move the system carefully to the place provided for it with a suitable lifting device.
- The system must be set up on a holding surface in accordance with the requirements of Chapter C/2.

2. Water-side connections

2.1 Necessary qualifications of the assembly staff

i

The water-side connection must only be made by trained professional staff members.

Observe general regulations (in German-speaking countries, DIN, DVGW, SVGW and ÖKGW) as well as local installation requirements while installing the system.

2.2 Making the hydraulic connections

Inlet

- Remove the sealing disks from the screw connection in the inlet.
- © Connect the inlet.

Permeate

- Remove the sealing disks from the screw connection in the permeate output.
- © Connect the permeate output with the consumer line.

Concentrate

- Remove the sealing disk from the concentrate line.
- © Connect the concentrate output with the drain

In standstill times of the system the max. back pressure of 0,3 bar must not be exceeded.

The cross section of permeate piping by customer may only be one nominal width greater than the permeate output piping of the system.

At a back presure > 0,3 bar and the danger of permeate backflow, a check valve has to be installed into permeate piping.

It is only allowed to install a shut-off valve into permeate piping if also a relief valve is installed.

3. Electrical connection

3.1 Necessary qualifications of the assembly staff

Electrical connection tasks may only be performed in Germany by an electrician certified by VDE in accordance with the applicable requirements.

3.2 Connecting the power supply

Before connecting the power supply, make certain that the corresponding main switch is turned off!

Make the power supply connection in the control cabinet with a fixed connection according to the circuit diagram.

3.3 Connecting the accessories / signal exchange

Connections for the

- Product container level
- Forced stop
- Combined malfunction
- Dosing

should be made according to the circuit diagram.

Contents of Chapter E

1. Placing the system in service	. 2
1.1 Qualifications of the commissioning staff	
1.2 Rinsing out the preservative fluid	
1.3 Adjusting the operating parameters	
2. Taking the system out of service	. :

1. Placing the system in service

1.1 Qualifications of the commissioning staff

The system must be placed in service by qualified professionals.

Before the system is placed in service, all screw connections must be retightened.

1.2 Rinsing out the preservative fluid

The preservative solution contains 1.5% sodium bisulfite and 20% glycerin.

The preservation fluid should be drained out into the run-off channel in accordance with applicable regulations governing pouring and draining.

- © Connect the product permeate with run-off channel
- Open valves 1V05 and 1V06 completely
- Open feed water
- Set the system into operation (see Chapter F) and rinse for minimum 30 minutes

The higher permeate conductivity during the rinsing of the system can cause a shut down of the system.

In this case quit the malfunction (see Chapter F) and continue rinsing.

1.3 Adjusting the operating parameters

- Adjust min. concentrate flow (see chapter C/2) at 1FI01 with valve 1V06
- Adjust permeate flow (see Chapter C/2) at 1FI02 with valve 1V05
- If necessary adjust concentrate recirculation (see Chapter C/2) with valve 1V06
- Record the operating data of the system on a control sheet (see Chapter H)
- Turn off the system
- Reconnect the permeate with the tank or consumer

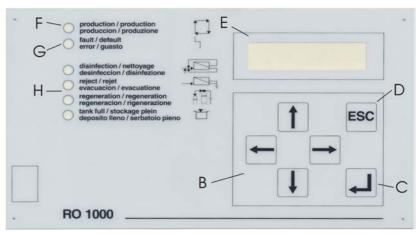
In no event should the values specified in the technical data for permeate output, recovery, operating pressure and product output be exceeded.

The permeate output of the system depends on the temperature of the feed water. For further information see Chapter A/3.2.

2. Taking the system out of service

Taking the system out of service refers to a down time of >30 days for the system.

When the system is taken out of service, it must be preserved.


For information on preserving the system, please see chapter I.

Contents of Chapter F

1. Operating and display components	2
1.1. RO 1000 control system	
1.2. Operating states	3
2. Short description of the RO 1000 control system	4
2.1. Operating structure	4
2.2. Functional diagram	5
2.3. Turning on	6
2.4 Turning off	7

1. Operating and display components

1.1. RO 1000 control system

	Name	Function
Α	Main switch	The main switch is located on the
		left side of the switch cabinet.
		- Turns the system on and off.
В	$ \leftarrow \uparrow \rightarrow \downarrow$	- Password entry
		- Menu selection
		- Selection
С	ESC	- Confirmation of entries
		- Brings up a menu
D	 	- Bestätigung von Eingaben
	D'andan	- Menüaufruf
E	Display	Displays:
		- the current operating state
		- the conductivity and temperature of the permeate
		- operating hours
		- current malfunctions
F	Operation LED	Continuous:
	(green)	→ System in operation
	(9. 55)	Flashing:
		Maintenance request
G	Malfunction LED	Active malfunction
	(red)	
Н	Operating states L	.EDs (yellow)
	Disinfecting	Disinfecting active
	Rejection	Permeate rejection active
Permeate production interrup		Forced stop entry active
		Permeate production interrupted
	Tank full	Upper level input active
		Permeate production interrupted

For additional information on the function and operation of the RO 1000 control unit, please refer to the RO 1000 control unit manual in the appendix of these Operating Instructions. 1.2. Operating states

Turned off System off (all outputs inactive)

Malfunction recording off

Operation

⇒ **Rejection** 1V01 input valve opened, 1P01 pump in operation

1V02 permeate valve (when existing) closed

Permeate is being rejected

⇒ **Production** 1V01 input valve opened, 1P01 pump in operation

1V02 permeate valve (when existing) opened

System is producing permeate

⇒ Concentrate rinsing 1V01 input valve opened, 1V03 concentrated valve opened

After a set amount of time elapses, switch over to tank full

⇒ Tank full Upper level input (terminal 31, 32) opened

System in standby until request about level active again

⇒ Discont. rinsing Time-controlled forced production if the operating state tank full

has been active for the set time

⇒ Forced stop Forced stop input (terminal 23, 24) opened

Product production interrupted until Forced stop input closed again

Disinfecting System in operation without any safety devices

2. Short description of the RO 1000 control system

following 3 levels

Display level Alternating display of:

- the current operating state

- the conductivity and temperature of the permeate

- operating hours

- current malfunctions

Operating level - Change of operating mode

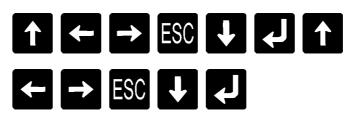
- Acknowledgment of malfunctions if parameters are so set

- Calibration of Cy-permeate and T-permeate

Adjustment of Cy-limit valuesAdjustment of alarm options

The user password is used to bring up the operating level.

Operator password

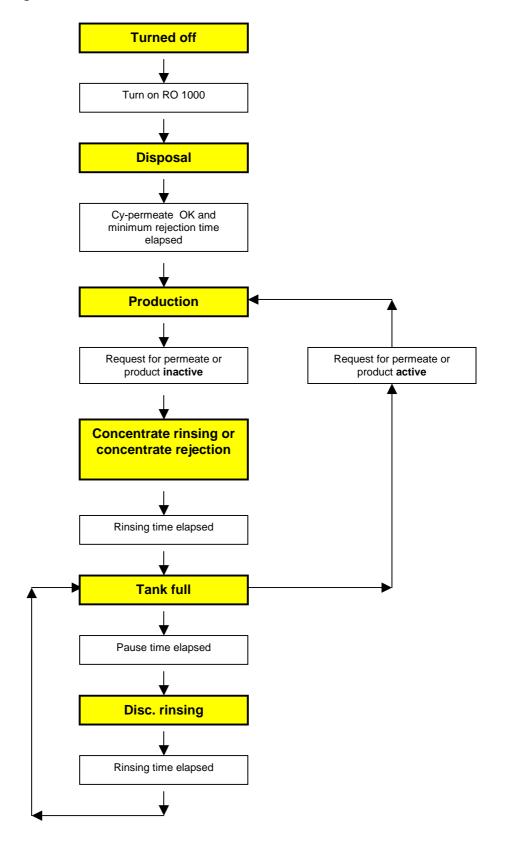

Technician level In addition to the operating level:

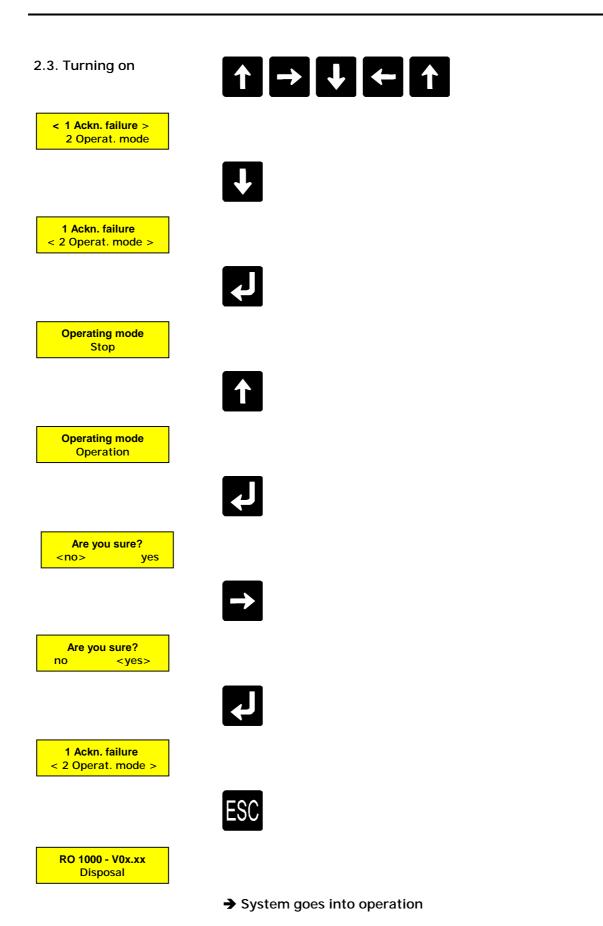
- Parameter setting

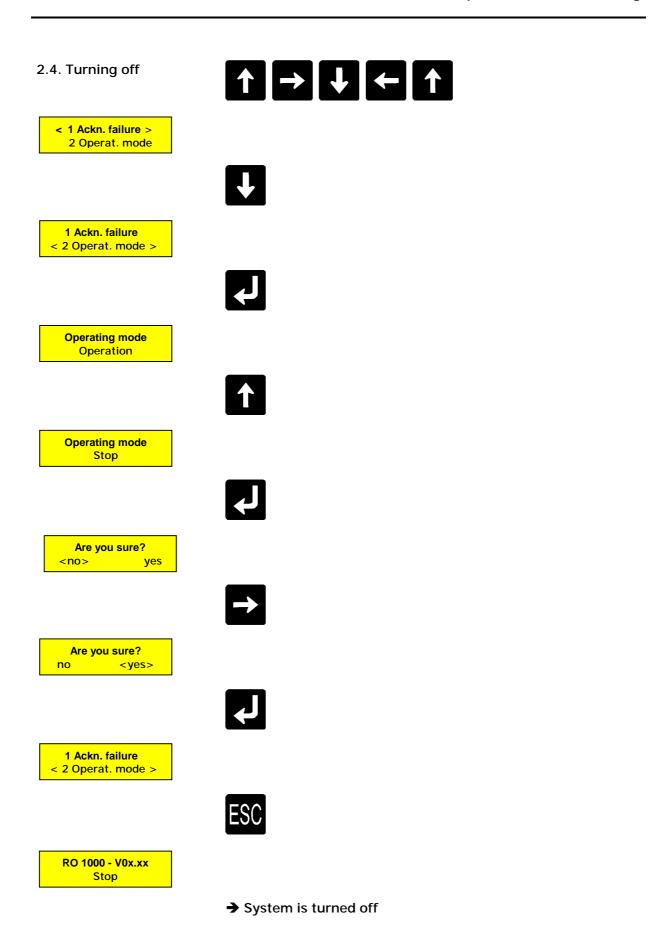
- Diagnostics

The technician password is used to bring up the technician level.

Technician password






For additional information on operating, calibrating and setting parameters for the RO 1000 control unit, please refer to the RO 1000 control unit manual in the appendix of these Operating Instructions.

Sep. 18, 2002 / Tie

2.2. Functional diagram

Contents of Chapter G

1. General information	2
1.1. Malfunction message to the manufacturer	2
1.2. Malfunction display	
1.3. Malfunction table	3
1.4 Malfunction reset	Δ

1. General information

The use of high-quality individual components and installing safety and monitoring equipment in our systems allows us to reach a very high level of operational availability.

If an operating malfunction should nevertheless arise, the error can easily be detected using the following malfunction table and the cause eliminated.

If serious malfunctions occur, please contact the manufacturer (see rating plate).

Only qualified professional personnel with the appropriate training should eliminate malfunctions, taking into consideration the safety requirement in Chapter A of these Operating Instructions!

Power must be disconnected from the system before beginning these tasks, and the system must be protected to ensure it is not turned on again unintentionally!

Pressure must be released from all lines.

1.1. Malfunction message to the manufacturer

To ensure effective help in resolving malfunctions, please have the following information on hand:

- Manufacturing number
- Item number
- System type
- Log sheets and maintenance sheets from the last 4 months

1.2. Malfunction display

- Red malfunction LED on the control system
- Malfunction message appears on the display

Sep. 23, 2002 / sw

1.3 Malfunction table

Malfunction	Cause	Remedy
Control display dark	Power supply interrupted	Make power supply connection
	10 A fuse F1 defective	Replace the fuse in question
	200 mA fuse F2, F3 defective	
	Flat band cable between the	Unscrew the front plate and plug
	motherboard and the display	the cable back in
	unplugged	
	Control system defective	Replace the control system
Motor/hard water display:	Hard water sensor triggered (if	- Check the soft water quality
	present)	- Check the sensor and replace if necessary
	Wire jumper defective	Restore the wire jumper
	Motor protection switch	- Check the adjustment of the
	triggered (if present)	motor protection switch
		- Check the motor
Low pressure display:	Feed water pressure too low	- Check the pressure difference
		on the softener
		- Increase the feed water
		pressure
	Filter blocked	Replace the filter cartridge
	Pressure switch defective	Replace the pressure switch
	1V01 input valve defective	Replace the valve
CO exceeded display:	Conductivity of feed water too	Calculate desalinization rate
	high	Target: > 97%
	Desalinization rate too low	After consultation with the
		manufacturer:
		- Clean RO modules
FEDDOM Sell display	Luitieliantian annon	- Replace RO modules
EEPROM fail display:	Initialization error	Check parameters according to
		parameter overview (see control unit manual in the
		,
		appendix of these Operating Instructions)
Malfunction LED is flashing:	System error	Replace the control system
<u> </u>	- ,	
System does not go into	Tank full LED is lit even though	Level switch defective
operation	the permeate tank is empty	
	System in operation	Pump defective
	Forced stop LED is lit	Connected softener is in
		regeneration

Malfunction	Cause	Remedy
Permeate output too low	Feed water temperature too low	Calculate permeate output according to Chapter A3.3
	Permeate counterpressure too high	Check permeate line
	Modules blocked	After consultation with the manufacturer:
		- Clean RO modules - Replace RO modules
	Pump defective	Replace pump

☞RO 1000: <mark>ESC</mark> 1.4 Malfunction reset

Contents of Chapter H

1. Maintenance and monitoring tasks	2
1.1 Safety information	
1.2 General information	2
2. Logging operating parameters	3
2.1 Performing a concentrate rinse (water brushing)	4
3. Maintenance	5
3.1 Maintenance tasks	

1. Maintenance and monitoring tasks

1.1 Safety information

The operator must ensure that all maintenance, monitoring and assembly tasks are performed by authorized and qualified trained personnel.

The system must be shut down and protected from being placed in operation again unintentionally before all repair and maintenance tasks.

Before beginning tasks on the electrical systems and equipment, a check must confirm that power has been disconnected from the system. In addition, the system must be secured to prevent it from being turned on again unintentionally.

Protective clothing suitable for the hazard at hand must be worn while performing the maintenance tasks.

Immediately after the maintenance tasks are completed, all safety and protective equipment must be set back in place and functionality restored.

1.2 General information

To ensure long-term problem free operation of the system, maintenance tasks must be performed at regular intervals and a record must be kept of operating parameters!

The record of operating parameters and maintenance tasks should be kept by the operator of the system himself.

Signing a maintenance contract with the supplier makes it possible for the supplier to take over the responsibility of performing regular maintenance tasks on the system.

A record book should be kept to record operating parameters. It is located in the appendix of these operating instructions. The purpose of this record keeping is to have continuous documentation of the operating parameters. This makes it easier to detect a drop in output or incorrect functionality of the system and then to eliminate the problem.

The documentation of maintenance tasks should be kept on the maintenance log that is provided for this purpose.

2. Logging operating parameters

The following parameters must be checked and recorded weekly:

Parameter	Measurement point/remarks
Operating hours	Control display
Residual hardness in soft water	Check with the hardness kit on the 1V07 tap
Conductivity of feed water	Verification with conductivity measurement device
Temperature of feed water	Verification with conductivity measurement device
Fine filter inlet pressure	1Pr01 pressure gauge
Fine filter outlet pressure	1Pr02 pressure gauge
Operating pressure (if existing)	1Pr05 pressure gauge
Concentrate pressure	1Pr06 pressure gauge
Permeate output	1FI02 flow meter
Concentrate output	1FI01 flow meter
Concentrate recirculation (if existing)	1FI03 flow meter
Conductivity of permeate	Control display
Temperature of permeate	Control display
Desalinization rate	For calculation see Chapter A 3.2
Absence of leaks in the system	

i

Minor fluctuations in the conductivity of the permeate and permeate output are normal. The effect of the temperature or a fluctuating conductivity may be reasons for this. When the desalinization rate drops below 97% or there is a drop in permeate output of about 10%, a concentrate rinse should be performed (see 2.1).

2.1 Performing a concentrate rinse (water brushing)

During a concentrate rinse, the increase in the flow of concentrate flows more strongly through the membrane(s). Because of this, soluble accretions are more readily removed and rinsed away.

The duration of a "water brushing" should be at least 60 minutes, and it should be performed as follows:

- Log record of actual values
- Open the 1V06 concentrate valve
- Open the 1V05 pressure control valve
- Allow to rinse for at least 60 minutes
- Adjust the operating parameters to the target values
- Log record of actual values

Note:

If the conductivity of the permeate does not improve permanently after a concentrate rinsing, a chemical cleaning of the membranes must be performed.

In this case, it is essential to contact the supplier to agree upon the further procedure!

3. Maintenance

Maintenance tasks should be performed when needed, but no less often than at the maintenance specified intervals!

3.1 Maintenance tasks

The following maintenance tasks should be performed:

System part	Task to be performed	Maintenance interval
Fine filter	Replace the fine filter cartridges and clean the filter housing	- 3 months - if the pressure drops by 0.8 bar
Pressure switch	Functional test by blocking off the feed water inlet → RO must switch off	- 6 months
Hose connections	Check hose connections for damage and leaks	- 1 month
- Conductivity cell(s) - pH-sensor (if existing)	Check of parameters with reference device, if necessary new calibration	on start-up1 yearif quality of feed water changes
Accessories	see Operating Instruc	ctions in the appendix

Log sheet	
Customer:	System Type:
	Item No.:
	Placed in service on:

Date		Values when placed in service		
Operating hours	h			
Residual hardness of soft water	°dH			
Conductivity of feed water	μS/cm			
Temperature of feed water	°C			
Fine filter inlet pressure	bar			
Fine filter outlet pressure	bar			
Operating pressure	bar			
Concentrate pressure	bar			
Permeate output	l/h			
Concentrate output	l/h			
Concentrate recirculation (if existing)	l/h			
Conductivity of permeate	μS/cm			
Temperature of permeate	°C			
Desalinization rate	%			
Absence of leaks in the system				

Note: The values when placed in service must be entered when the system is placed in service.

After that, this log sheet should be duplicated. As described in chapter H, the operating parameters should be documented weekly.

If there is a significant deviation in actual values from the values when placed in service, the operator should contact the supplier and if appropriate send this log to the supplier as well.

CW 12

CW 13

Maintenance lo	g										
Customer:					stem type: em No.:						
					iced in ser						
1. Quarter / year:											
System part	CW 1	CW 2	CW 3	CW 4	CW 5	CW 6	CW 7	CW 8	CW 9	CW 10	CW 1
Fine filter											

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

Pressure switch

Hose connections

Conductivity cell pH-sensor (if existing)

Accessories

CW 25

CW 26

Maintenance log	l										
Customer:				Sy	stem type:	:					
					em No.:						
				Pla	aced in ser	vice on: _		cv	V		
2. Quarter / year: _											
System part	CW 14	CW 15	CW 16	CW 17	CW 18	CW 19	CW 20	CW 21	CW 22	CW 23	CW 24
Fine filter											

Conductivity cell pH-sensor (if existing)							
Accessories							

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

Pressure switch

Hose connections

CW 39

Maintenance log												
Customer:					stem type:							
					em No.: aced in ser							
3. Quarter / year: _												
System part	CW 27	CW 28	CW 29	CW 30	CW 31	CW 32	CW 33	CW 34	CW 35	CW 36	CW 37	CW 38
Fine filter												
Pressure switch												

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

Hose connections

Conductivity cell pH-sensor (if existing)

Accessories

Maintenance lo	•				Custom t	umo.								
Customer:														
			_				n:							
4. Quarter / year:														
System part	CW 40	CW 41	CW 42	CW 43	CW 44	CW 45	CW 46	CW 47	CW 48	CW 49	CW 50	CW 51	CW 52	(KW
Fine filter														
Pressure switch														
Hose connections														
Conductivity cell pH-sensor (if														

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

existing)

Accessories

Contents of chapter I

1. Preserving the system	2
1.1 General points	2
1.2 Preserving options	2
1.3 Materials required	2
1.4 Connecting the preservation tank	2
1.5 Preparing the preserving solution	3
1.6 Executing the preservation procedure	4
1.7 Composition of the preserving solution	4
2. Cleaning the system	5
2.1 General points	5
2.2 Materials required	5
2.3 Connecting the cleaning tank	5
2.4 Preparing the cleaning solution	6
2.5 Executing the cleaning procedure	6
2.6 Cleaning solutions	

1. Preserving the system

1.1 General points

After three months at most the preserving agent should be flushed out and replaced if necessary.

When the system is shut down for more than thirty days, it must be preserved.

 $oldsymbol{i}$

When it is put into operation again, please follow the procedure described in chapter E of this operating manual.

With 2 pass RO-systems, every stage will be preservated and cleaned seperately.

With 2 pass RO-systems the components of the 2nd stage are designated wit "2" after the aggregate designation. For example the pressure regulating valve of stage 1 is 1V05, the pressure regulating valve of stage 2 is 1V25.

The preserving solution contains 1.5% of sodium bisulphite and 20% of glycerine.

The preserving solution should be fed into the pipelines in accordance with the directives that apply in the given case.

1.2 Preserving options

- Sodium bisulphite: preserving without antifreeze
- Sodium bisulphite + glycerine: preserving with antifreeze, to a temperature of 10° C

1.3 Materials required

- Preserving tank with locking valve
- 3 connecting tubes
- Preserving/neutralisation chemicals: sodium bisulphite (art. no. 530014) and glycerine (art no. 530024)
- Protective clothing (goggles, gloves, apron)

1.4 Connecting the preservation tank

- Switch off system
- Close the feed water inlet

1.4.1 For systems without cleaning connections

Set up the preservation (9B01) tank at a height greater than that of the system, so as to ensure that the preserving solution will flow into the RO system without any difficulty

- © Close off the valves 9V01 and 9V02 on the preservation tank
- Detach the feed water inlet, the permeate pipe and the concentrate pipe of the RO system
- The connecting tubes should be connected as follows:
 - Connect the outlet from the preservation tank (9V02) with the feed water inlet of the RO system
 - Set up a tube connection between the preservation tank and the concentrate outlet of the RO system
 - Set up a tube connection between the preservation tank and the permeate outlet of the RO

1.4.2 For systems with cleaning connections (optional)

- Set up the preservation tank (9B01) at a height greater than tha of the system, so as to ensure that the preserving solution will flow into the RO system without any difficulty
- Close off the valve (9V02) on the preservation tank
- The connecting tubes should be connected as follows:
 - Connect outflow of cleaning system with 1V10 cleaning connection
 - Set up a tube connection between preservation tank and 1V12 concentrate cleaning connection
 - Set up a tube connection between preservation tank and 1V11 permeate cleaning connection

1.5 Preparing the preserving solution

Danger of fumes!

In handling cleaning chemicals, please have regard to the general instructions for avoidance of accidents and to what is stated in the relevant safety data sheet.

When pouring the chemicals into the preservation tank, protective clothing should be worn – protective goggles, rubber gloves and rubber apron.

- Charge the preservation tank with a quantity of soft water as specified in the table (see 1.7, depending on the size of the system).
- Check that the connections are adequately sealed.
- Prepare the preserving solution by adding the chemicals (as shown on table) to the preservation tank.

Important:

Chemicals should be added with caution - stir constantly!

1.6 Executing the preservation procedure

- Open the 1V06 concentrate control valve and the 1V05 pressure control valve completely
- Put the three-way ball valves (1V11 and 1V12) in "Flushing" position*
- Open the 1V10 tap*
- © Open the locking valve (9V02) on the preservation tank
- Switch the RO system to "Disinfection" operating mode (see control manual)

Warning:

There are no safety facilities when the system is running!

- Let the preserving solution circulate for ten minutes
- Switch off the RO system (see control manual)
- © Close the locking valve (9V02) on the preservation tank
- Close the 1V10 tap*
- Put 1V12 three-way ball valve in "Operational" position*
- Detach the tube connections
- © Close off feed water input and permeate and concentrate outlets with sealing disks
- Dispose of preserving solution (see 1.1 "General points")

1.7 Composition of the preserving solution

	Permeate output	Soft water sup-	Sodium bisulphi-	Glycerine
	of the system	ply	te powder	2.3001110
	I/h	l Pry	n a	I
Art. no.	1711	'	530 014	530 024
Conc. of chemicals			97%	86,5%
	20 - 50	10	100	1,6
	60 - 170	15	150	2,5
	220 - 450	20	200	3,3
	600 - 1000	30	300	4,9
	1500 - 2500	60	600	9,8
	3000 - 5000	80	800	13,0
	- 10.000	160	1600	26,0
	- 15.000	240	2400	39,0
	- 20.000	320	3200	52,0
	- 30.000	750	7500	78,0

The pH value of the preserving solution is 4 or thereabouts.

^{*} Only for systems with cleaning connections

2. Cleaning the system

2.1 General points

If the conductivity of the permeate rises by as much as 15%, or if the permeate output falls by as much as 10%, it is recommended that the membrane modules should be cleaned.

There is a distinction to be made between two types of cleaning:

 $oldsymbol{i}$

- 1.) Acid cleaning to remove carbonate and iron deposits
- 2.) Alkali cleaning to remove organic impurities

Generally cleaning should be carried out in the following sequence:

alkali → acid → alkali

Please discuss the type of cleaning with the manufacturer before carrying it out.

Cleaning solution should be disposed with in adherence to the local or country-specific requirements!

2.2 Materials required

- · Cleaning tank with locking valve
- Three connecting tubes
- Universal indicator paper, pH 0-14 (art. no. 630074)
- Preserving/ neutralising chemicals (see 2.6 "Cleaning solutions")
- Conductivity measurement device for comparative measurement
- Protective clothing (goggles, gloves, apron)

2.3 Connecting the cleaning tank

see section 1.4

2.4 Preparing the cleaning solution

Danger

Danger of fumes!

In handling cleaning chemicals, please have regard to the general instructions for avoidance of accidents and to what is stated in the relevant safety data sheet.

When pouring the chemicals into the cleaning tank, protective clothing should be worn – protective goggles, rubber gloves and rubber apron!

© Charge the cleaning tank with the quantity of soft water specified

in the table.

- [©] Check that the connections are adequately sealed
- Prepare the cleaning solution by adding the chemicals (as shown on table 2.6) to the cleaning tank.

Important:

Chemicals should be added with caution - stir constantly!

2.5 Executing the cleaning procedure

- Switch off the system
- Close the feed water inlet

Charging the system with the cleaning solution

- Put three-way ball valves (1V11 and 1V12) in "Cleaning" position*
- Open the 1V10 tap*
- Open the 1V06 concentrate control valve and the 1V05 pressure control valve completely
- © Open the locking valve on the cleaning tank
- Switch the RO system to "Disinfection" operating mode (see control manual)

Warning:

There are no safety facilities when the system is running!

Time needed for the cleaning solution to be effective

- Let cleaning solution circulate for between **30 and 60 minutes**
- Switch off RO system (see control manual)
- Close locking valve (9V02) on the cleaning tank
- Dispose of cleaning solution (see 1.1, "General points")
- Close 1V10 tap*

Flushing out the system

- Open feed water inlet
- Switch RO system to "Disinfection" operating mode (see control manual)
- Flush out the system for **at least 45 minutes**. Here the flushing
 - liquid that emerges should be disposed of a quantity at a time (see 1.1, "General points")
- Switch off RO system (see control manual)
- Detach the connecting tubes
- Reconnect the feed water inlet and permeate and concentrate outlets
- Put the 1V11 and 1V12 taps back into operating position*

Do not terminate the cleaning procedure until the pH value of the concentrate is the same as the pH value of the feed water.

* Only for systems with cleaning connections

The temperature of the cleaning solution must not exceed 35° C! If the pH value shows no further change between the input and outflow of the cleaning solution, the cleaning procedure may be terminated.

2.6 Cleaning solutions

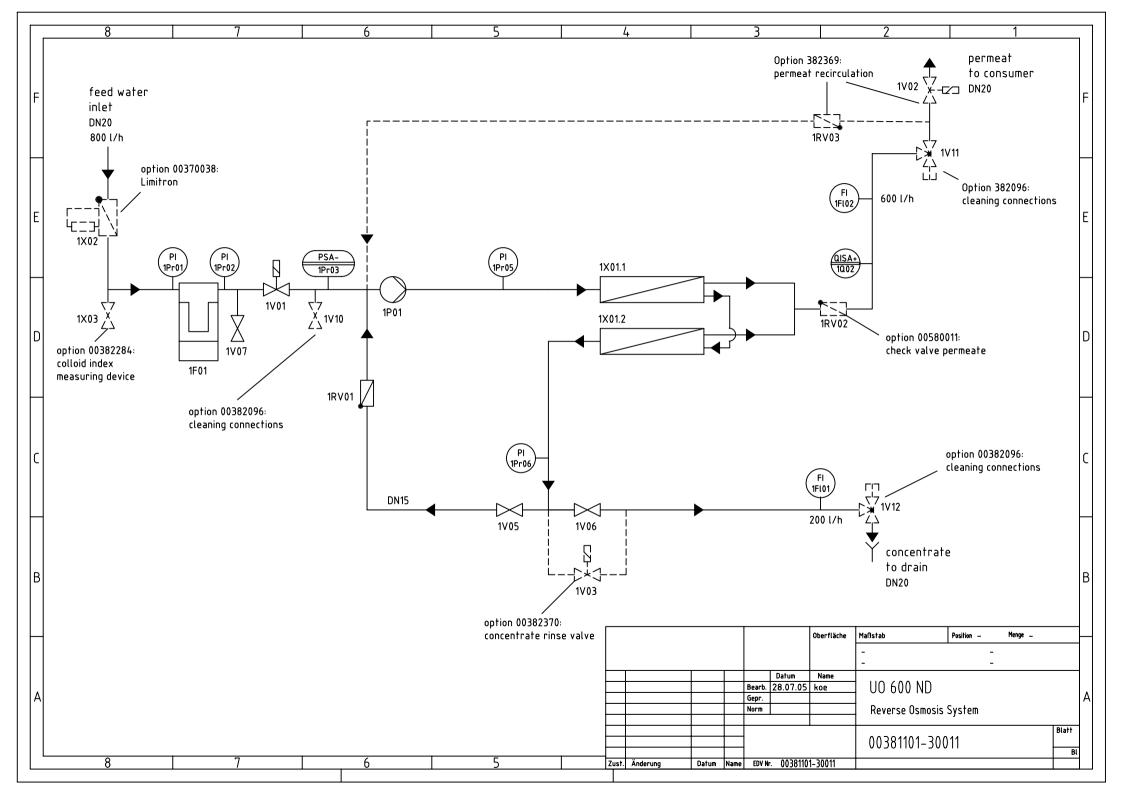
2.6.1 Acid cleaning

			Cleaning option 1	Cleaning option 2
	Permeate output	Soft water sup-	Citric acid	Hydrochloric
	of the system	ply	powder	acid
	I/h	ĺ	kg	ml
Art. no.			530 015	530 13
Conc. of chemicals			100%	33%
	50 - 250	50	1,0	250
	600 - 1500	100	2,0	500
	2000 - 3500	200	4,0	1000
	4000 - 5000	200	4,0	1000
	6000 - 8000	300	8,0	1500
	10.000 - 15.000	500	10,0	2500
	- 18.000	750	15,0	3750
	20.000 - 25.000	1000	20,0	5000

The pH value of the preserving solution is 2 or thereabouts. It should not be allowed to fall below this level.

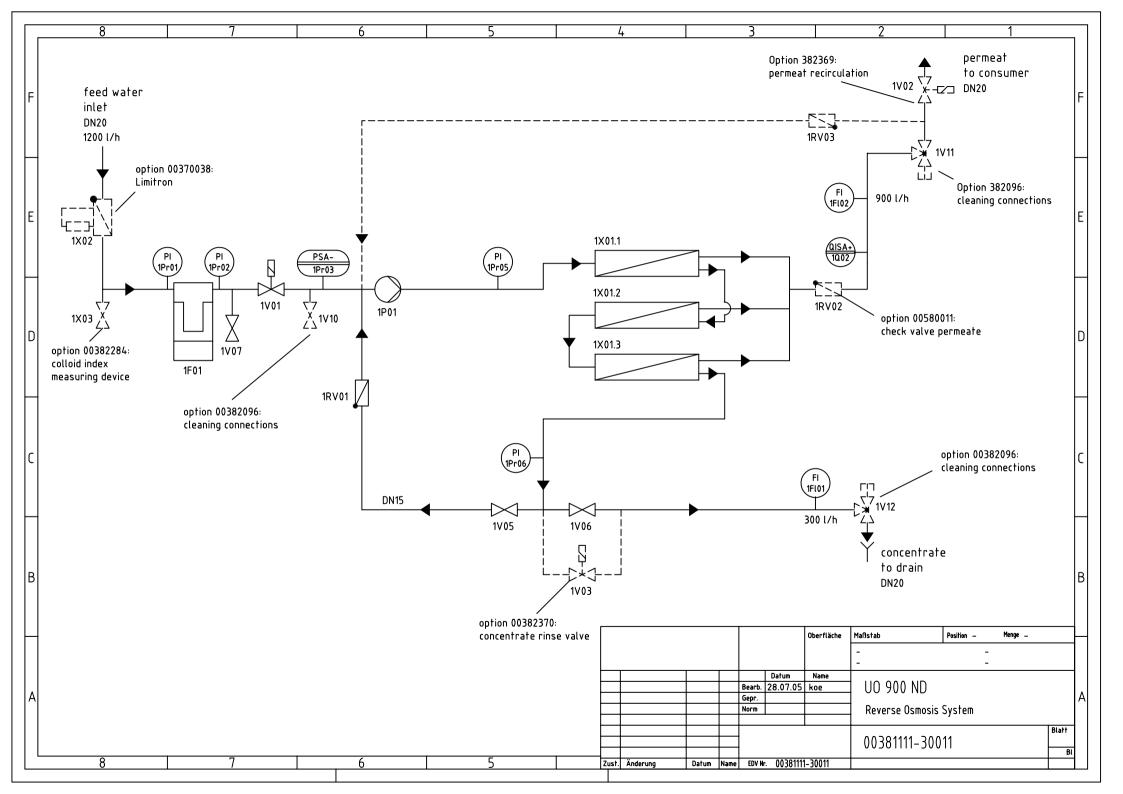
2.6.2 Alkali cleaning

				eaning otion 1	Cleaning option 2
	Permeate output	Soft water	NaOH-	Sodium dodecyl	HC310
	of the system	supply	flakes	sulphate	
	l/h	1	g	g	
Art. no.			530 027	530 21	530 051
Conc. of chemicals			100%	90%	-
	50 - 250	50	50	15	250
	600 - 1500	100	100	25	500
	2000 - 3500	200	200	50	1000
	4000 - 5000	200	200	50	1000
	6000 - 8000	300	300	75	1500
	10.000 - 15.000	500	500	125	2500
	- 18.000	750	750	190	3750
	20.000 - 25.000	1000	1000	250	5000

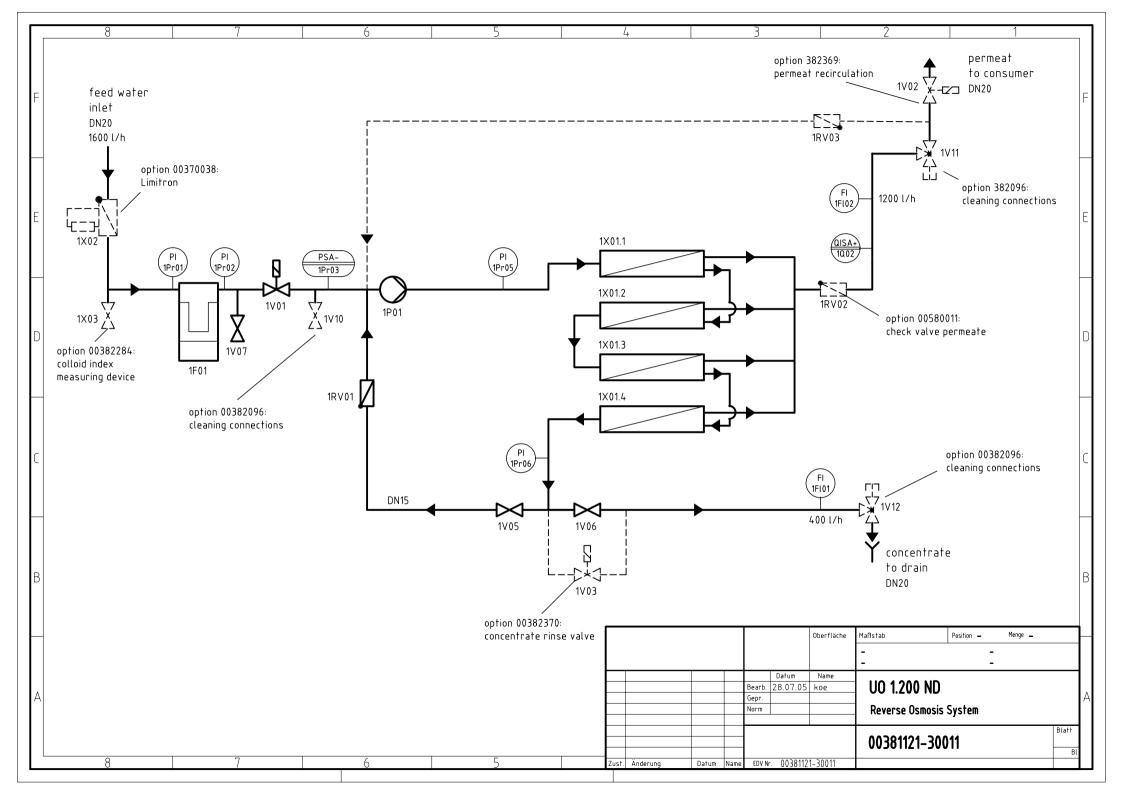


The pH value of the preserving solution is 12 or thereabouts.

It should not be allowed to fall below this level.

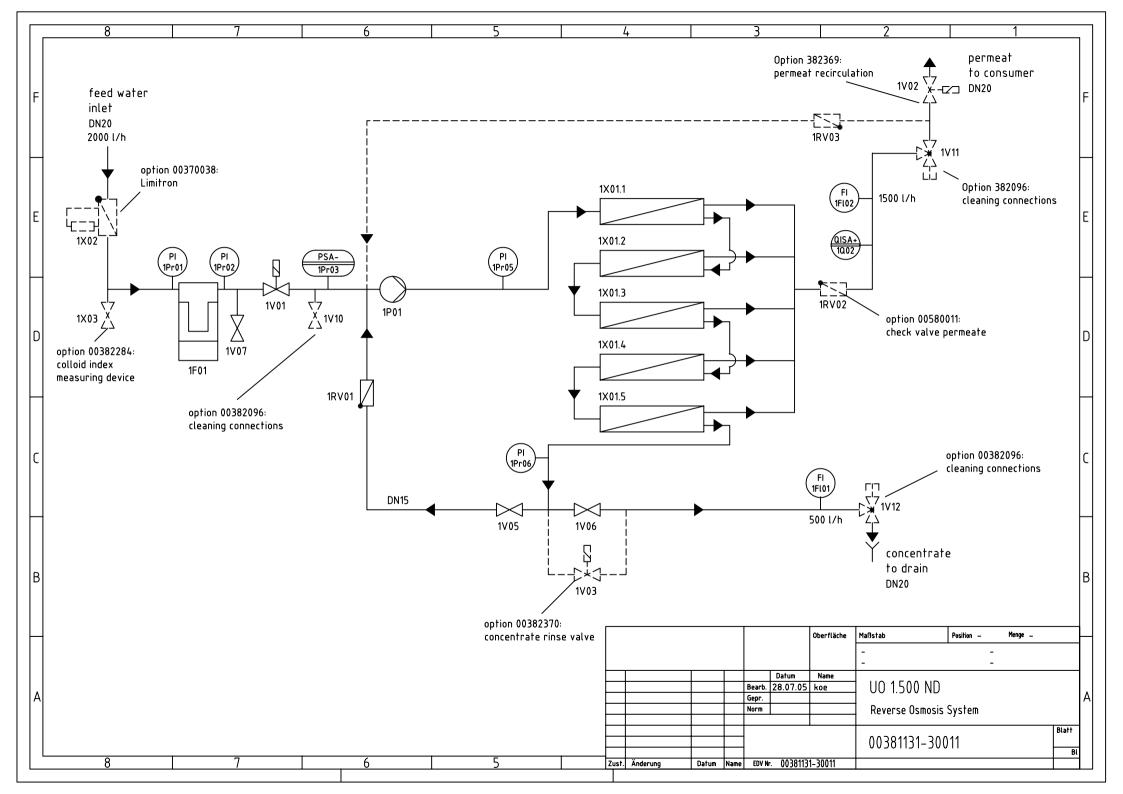

Appendix

R+I flowchart with components and spare parts list



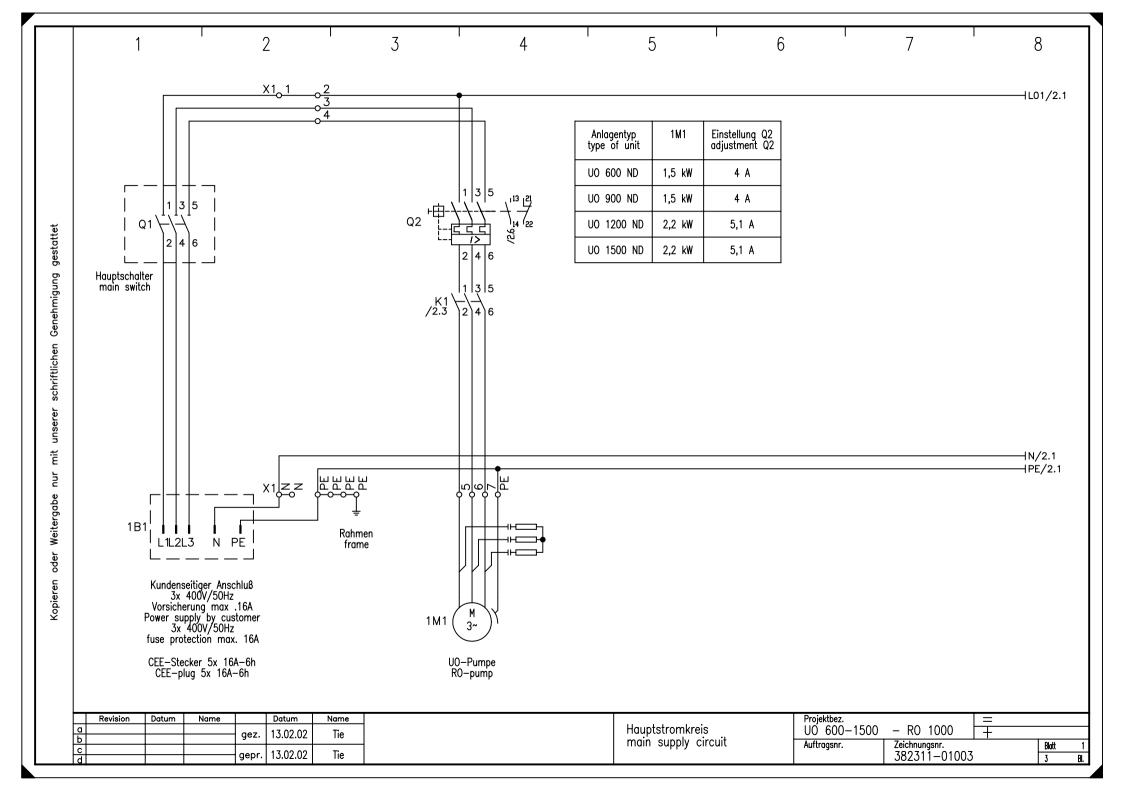
UO 600 ND Code-No. 00381101		Component List			
P+I-No. Code-No.		Description			
1 1F()1 1 1		filter housing 10", ¾" IG, blue cup filter cartridge 10", 5 μm			
1FI01	00 580 033	flowmeter concentrate, 60-640 l/h			
1FI02	00 580 033	flowmeter permeate 60-640 l/h			
1P01	00 390 227	pump CR 3-19, 3x400V/50Hz, 1,5KW			
1Pr01	00 630 006	pressure gauge filter inlet, NG63, ¼"h, 0-10 bar			
1Pr02	00 630 006	pressure gauge filter outlet, NG63, ¼"h, 0-10 bar			
		pressure switch FF4-8, 3/8"			
1Pr05	00 630 209	pressure gauge operation pressure, NG63,¼"h, 0-25 bar			
1Pr06	00 630 209	pressure gauge concentrate pressure, NG63, ¼"h, 0-25 bar			
1Q02	00 100 011	conductivity measuring cell permeate			
1RV01	00 410 027	check valve ½"			
1V01 00 410 098 solenoid valve, 1", DN20		solenoid valve, 1", DN20			
		regulating valve - concentrate recirculation, ball valve ½"			
1V06	00 415 003	concentrate regulating valve, ball valve ½"			
1V07	00 410 084	sample			
	00 400 015	vessel, GFK, 4040-1, 25 bar			
1X01	00 395 146	Low pressure element			
	00 382 313	control with RO 1000			
option 00382096 cleaning set:					
1V10	00 580 099	ball valve PVC, DN20			
1V11	00 405 003	3-way ball valve DN20			
1V12	00 405 003	3-way ball valve DN20			
option 003	82369 permeate	recirculation:			
1RV02	00 580 011	check valve PVC, DN20, PN16			
1RV03	00 580 011	check valve PVC, DN20, PN16			
1V02	00 405 117	solenoid valve, DN21, 230V/50Hz			
option 00382370 concentrate rinse valve					
1V03 00 410 107		solenoid valve, ½", 230V/50Hz			
further options:					
		check valve PVC, DN20, PN16			
1X02	00 370 038	hardness monitor Limitron 3/4"			
1X03	00 382 284	colloid index measuring device			

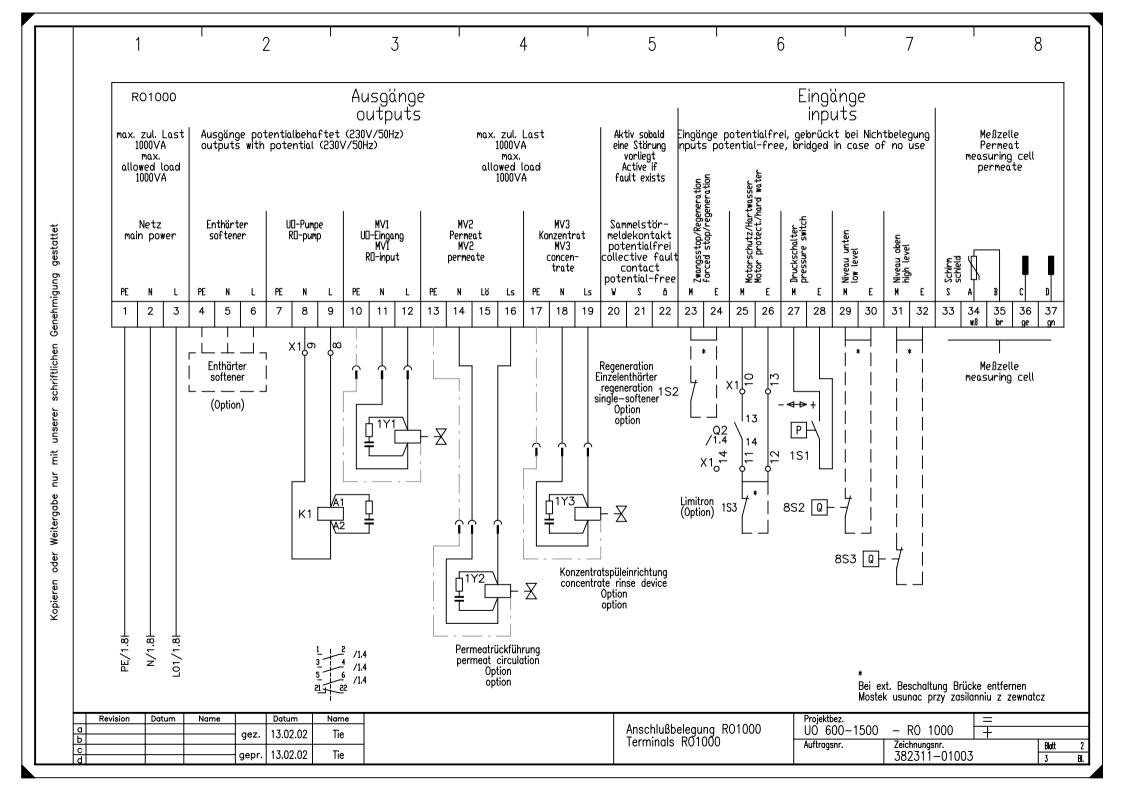
Release: 5/22/2006 / Koe 00381101-00112.xls

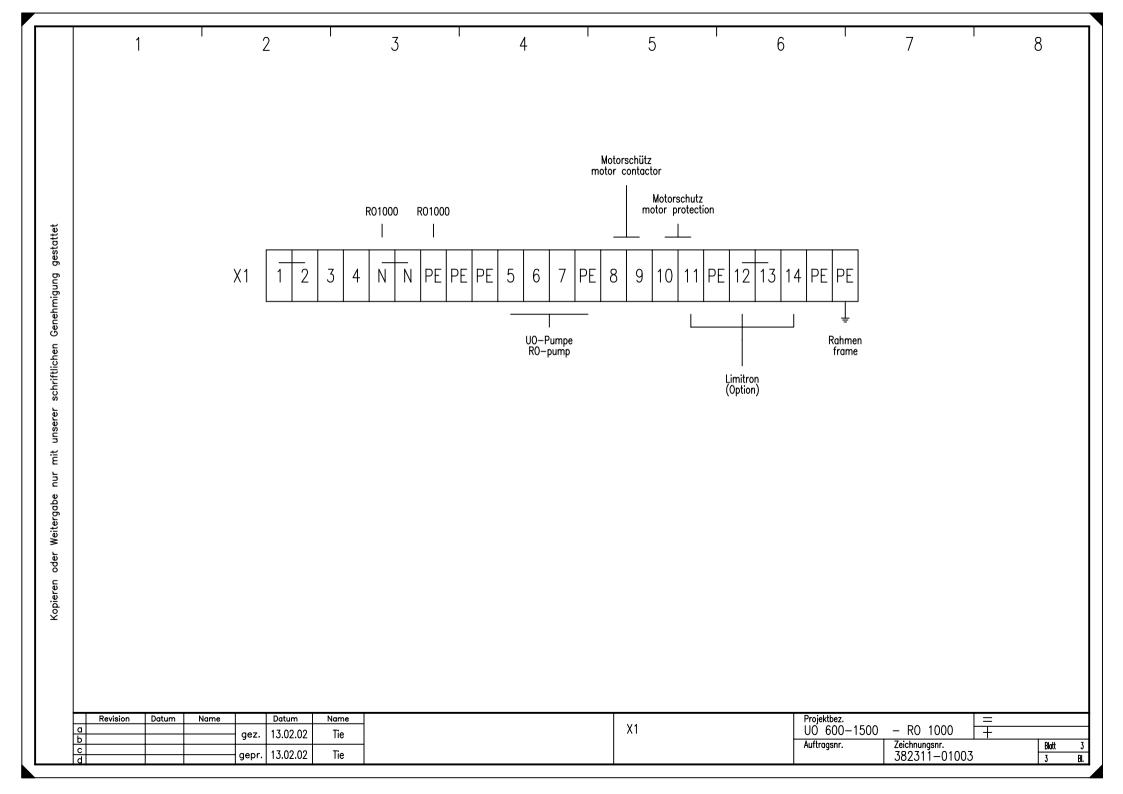


UO 900 ND Code-No. 00381111		Component List		
P+I-No.	Code-No.	Description		
1F01 00 330 049		filter housing 10", 3/4" IG, blue cup		
	00 335 014	filter cartridge 10", 5 μm		
1FI01	00 580 034	flowmeter concentrate, 100-1000 l/h		
1FI02	00 580 034	flowmeter permeate 100-1000 l/h		
1P01	00 390 227	pump CR 3-19, 3x400V/50Hz, 1,5KW		
1Pr01	00 630 006	pressure gauge filter inlet, NG63, 1/4"h, 0-10 bar		
1Pr02	00 630 006	pressure gauge filter outlet, NG63, 1/4"h, 0-10 bar		
1Pr03	00 600 012	pressure switch FF4-8, 3/8"		
1Pr05	00 630 209	pressure gauge operation pressure, NG63, 1/4"h, 0-25 bar		
1Pr06	00 630 209	pressure gauge concentrate pressure, NG63, 1/4"h, 0-25 bar		
1Q02	00 100 011	conductivity measuring cell permeate		
1RV01	00 410 027	check valve 1/2"		
1V01 00 410 09		solenoid valve, 1", DN20		
· · ·		regulating valve - concentrate recirculation, ball valve 1/2"		
1V06	00 415 003	concentrate regulating valve, ball valve 1/2"		
1V07	00 410 084	sample		
4.704	00 400 015	vessel, GFK, 4040-1, 25 bar		
1X01	00 395 146	Low pressure element		
	00 382 313	control with RO 1000		
option 00382096 cleaning set:				
1V10	00 580 099	ball valve PVC, DN20		
1V11	00 405 003	3-way ball valve DN20		
1V12	00 405 003	3-way ball valve DN20		
option 00382	369 permeate re	ecirculation:		
1RV02	00 580 011	check valve PVC, DN20, PN16		
1RV03	00 580 011	check valve PVC, DN20, PN16		
1V02	00 405 117	solenoid valve, DN21, 230V/50Hz		
option 00382370 concentrate rinse valve		e rinse valve		
1V03 00 410 107		solenoid valve, 1/2", 230V/50Hz		
further options:				
1RV02 00 580 011 check valve PVC, DN20, PN16		check valve PVC, DN20, PN16		
1X02 00 370 038 hardness monitor Limitron 3/4"				
1X03	00 382 284	colloid index measuring device		
		-		

UO 1.200 ND Code-No. 00381121		Component List		
P+I-No. Code-No.		Description		
1F01	00 330 038 00 335 014	filter housing 10", 3/4" IG, blue cup filter cartridge 10", 5 µm		
1FI01	00 580 035	flowmeter concentrate, 150-1600 l/h		
1FI02	00 580 035	flowmeter permeate 150-1600 l/h		
1P01	00 390 231	pump CR 3-21, 3x400V/50Hz, 2,2KW		
1Pr01	00 630 006	pressure gauge filter inlet, NG63, 1/4"h, 0-10 bar		
1Pr02	00 630 006	pressure gauge filter outlet, NG63, 1/4"h, 0-10 bar		
1Pr03	00 600 012	pressure switch FF4-8, 3/8"		
1Pr05	00 630 209	pressure gauge operation pressure, NG63, 1/4"h, 0-25 bar		
1Pr06	00 630 209	pressure gauge concentrate pressure, NG63, 1/4"h, 0-25 bar		
1Q02	00 100 011	conductivity measuring cell permeate		
		check valve 1/2"		
1V01				
· · ·		regulating valve - concentrate recirculation, ball valve 1/2"		
1V06	00 415 003	concentrate regulating valve, ball valve 1/2"		
1V07	00 410 084	sample		
	00 400 015	vessel, GFK, 4040-1, 25 bar		
1X01	00 395 146	Low pressure element		
	00 382 313	control with RO 1000		
option 00382096 cleaning set:				
1V10	00 580 099	ball valve PVC, DN20		
1V11	00 405 003	3-way ball valve DN20		
1V12	00 405 003	3-way ball valve DN20		
option 00382	2369 permeate r	ecirculation:		
1RV02	00 580 011	check valve PVC, DN20, PN16		
1RV03	00 580 011	check valve PVC, DN20, PN16		
1V02	00 405 117	solenoid valve, DN21, 230V/50Hz		
option 00382370 concentrate rinse valve				
1V03 00 410 107		solenoid valve, 1/2", 230V/50Hz		
further options:				
1RV02		check valve PVC, DN20, PN16		
1X02 00 370 038 hardness monitor Limitron 3/4"				
1X03	00 382 284	colloid index measuring device		
			_	


Release: 5/17/2006 / Doe 00381121-00112.xls




UO 1.500 ND Code-No. 00381131		Component List		
P+I-No. Code-No.		Description		
1F01 00 330 049		filter housing 10", 3/4"IG, blue cup		
	00 335 014	filter cartridge 10", 5 μm		
1FI01	00 580 035	flowmeter concentrate, 150-1600 l/h		
1FI02	00 580 035	flowmeter permeate 150-1600 l/h		
1P01	00 390 228	pump CR 3-25, 3x400V/50Hz, 2,2KW		
1Pr01	00 630 006	pressure gauge filter inlet, NG63, 1/4"h, 0-10 bar		
1Pr02	00 630 006	pressure gauge filter outlet, NG63, 1/4"h, 0-10 bar		
1Pr03	00 600 012	pressure switch FF4-8, 3/8"		
1Pr05	00 630 209	pressure gauge operation pressure, NG63, 1/4"h, 0-25 bar		
1Pr06	00 630 209	pressure gauge concentrate pressure, NG63, 1/4"h, 0-25 bar		
1Q02	00 100 011	conductivity measuring cell permeate		
		check valve 1/2"		
1V01 00 410 098 solenoid valve, 1", DN20		solenoid valve, 1", DN20		
		regulating valve - concentrate recirculation, ball valve 1/2"		
1V06	00 415 003	concentrate regulating valve, ball valve 1/2"		
1V07	00 410 084	sample		
43/04	00 400 015	vessel, GFK, 4040-1, 25 bar		
1X01	00 395 146	Low pressure element		
	00 382 313	control with RO 1000		
option 00382096 cleaning set:				
1V10	00 580 099	ball valve PVC, DN20		
,		3-way ball valve DN20		
1V12	00 405 003	3-way ball valve DN20		
	82369 permeate			
1RV02	00 580 011	check valve PVC, DN20, PN16		
1RV03	00 580 011	check valve PVC, DN20, PN16		
1V02	00 405 117	solenoid valve, DN21, 230V/50Hz		
option 00382370 concentrate rinse valve				
1V03 00 410 107		solenoid valve, 1/2", 230V/50Hz		
further options:				
' -		check valve PVC, DN20, PN16	1	
		hardness monitor Limitron 3/4"	1	
1X03	00 382 284	colloid index measuring device	1	
17.00	00 002 20 T	Tourist meadaming across	1	
			1	

Release: 10.03.06 / Doe 00381131-00112.xls

Circuit diagram

Control system manual

Control System

RO 1000

MANUAL

Datei: HBRO 1000 englisch_Stand170402

<u>RO 1000</u> - Version 1.12 <u>MANUAL</u>

Contents

1 General		ral	Page
	1.1 1.2 1.3	General remarks Scope of Application Instructions for Use	4 4 5
	1.3	Safety Instructions	5
	1.5	Terms and Definitions	6
	1.6	Declaration of Conformity	6
2	Instal	llation/Start-up	
	2.1	Basic Requirements	7
	2.1	Start-up	7
	2.3	Function of Terminals	8
3	Opera	ational Scope	
	3.1	Operating Settings	9
	3.2	Operating Parameters	10
	3.3	Operating Modes	12
	3.4	Operating Conditions	13
	3.5	Operating Failures/Failure messages	14
4	Opera	ation	
	4.1	User Interface	15
	4.2	Basic Elements	16
	4.2.1	Password Entry	16
	4.2.2	Selection of menu	16
	4.2.3	Selection	16
	4.2.4	Multiselection	17
	4.2.5	Numerical Editing	17
	4.2.6	Alphanumerical Editing	17
	4.2.7	Confirmations	17
	4.3	Operating Levels	18
	4.3.1	Normal Level	18
	4.3.2	User Level	19
	4.3.3	Technician's Level	19

10.01.96 Page 2/24

<u>RO 1000</u> - Version 1.12 <u>MANUAL</u>

	4.4	Menu Structure	20
	4.4.1	Main Menu	21
	4.4.2	Calibration Menu	22
	4.4.3	Setting Menu	23
	4.4.4	Diagosis Menu	23
5	Technical Data		24

10.01.96 Page 3/24

RO 1000 - Version 1.12 **MANUAL**

1 General

1.1 General Remarks

The present Manual is the technical documentation of the **RO 1000 control system** for reverse osmosis units.

When studying this manual, it would be useful to have the control system ready for operation so that you can directly try to realize the explained items and functions. As some of the modules are directly related to other ones, it is recommended to follow the given order of the different chapters.

Should there arise any problems or questions during the operation of the control system, please ask for our advice and assistance. Please try to localize the problem as exactly as possible and to record any actions or conditions which caused the problem; this will enable us to help you as quickly as possible.

The supplier does not accept any liability with regard to any faults contained in this documentation. Under no circumstances whatsoever a liability for any damages related directly or indirectly to the delivery and use of this documentation is accepted.

1.2 Scope of Application

The RO 1000 system is a control system for reverse osmosis units of different sizes. Its technical features are:

- microprocessor control with liquid crystal text display and keyboard covered with a protective film.
- LED displays for operation, malfunction, disinfection, disposal, regeneration and tank full
- circuit inputs: regeneration, motor protection (available by Limitent contact), pressure switch, min. permeate level as well as max. permeate level
- relay outputs: inlet valve, outlet valve, concentrate valve, system pump as well as alarm
- conductivity sensor for permeate, optional 2 to 200 μS/cm, resolution: 0.2%, accuracy:1%, temperature compensation with integrated sensor
- self-explanatory menu-assisted operator environment
- all settings and adjustments via keyboard/text display, no mechanical adjustments (potentiometers, trimmers, switches, plug-in bridges)
- any process time can be set
- preselection for tank type (with/without overflow), hardwater production (admissible/not admissible), concentrate displacement/disposal
- hour meter with maintenance interval message
- protection against improper acknowledgement of failures
- permanent display of measured values
- two-point calibration
- · technical diagnostic function

10.01.96 Page 4/24

RO 1000 - Version 1.12 **MANUAL**

1.3 Instructions for Use

The following instructions should be followed when operating the control system:

 Do not switch on/off the control system in quick succession. Wait at least 5 seconds between switching the main switch on and off.

- The control system should only be operated under the ambient conditions (temperature, humidity) mentioned in the technical data (see item 5). It is particularly important to protect the control system against water and humidity. It must not come into contact with splash water or condensed water.
- Manufacturer's seals (trimmer fixation, EPROM labels) must not be damaged. Otherwise the right to assert claims for defect shall lapse.
- Should the control system become defective, take note of the type of problem (consequences) before
 removing the system. The system can only be repaired if it is completely removed and the failure
 correctly described.
- The max. admissible load of the circuit outputs as well as the total admissible load of the unit (see item 5) must not be exceeded.

1.4 Safety Instructions

The following safety instructions are imperative:

- Diagnosis (see item 3.3) allows direct manipulation of all actuatores (valves, pumps,.etc.) without interlocks or monitoring. Access to this function therefore requires a password and only should be used by the experts.
- Should the control system not react in the normal way, it has to be switched off immediately and the
 maintenance service has to be informed.
- Do not try to repair the control system yourself (loss of guarantee), always call the authorized maintenance staff. Only this will guarantee a reliable and safe function of the system.
- When a protection device was activated (fuse, motor circuit breaker) you should first try to clear the problem (e.g. clean the pump) before reactivating the protection device. Frequent actuation always is due to a sensor/actuator failure which also could damage the control system itself.

Non-observance of these instructions may cause damage to the control system and the unit which may result in a loss of warranty.

10.01.96 Page 5/24

RO 1000 - Version 1.12 **MANUAL**

1.5 Terms and Definitions

The following scripts will be used for this manual:

Item	Script	Examples
keys LED's inlets/outlets	capital letters + bold capital letters + bold capital letters + bold	LEFT, UP, DOWN RINSE, DISPOSAL PUMP FAILURE, INLET VALVE
operating settings operating parameters	italics italics	ps-hard water, ps-pumps LIM, t-rinse
operating modes operating conditions operating failure	capitals + underligned capitals + underligned capitals + underligned	STOP, ON PRODUCTION; DISPOSAL MOTOR FAILURE, FORCED STOP

The following abbreviations will be used:

Cy-perm permeate conductivity t-perm permeate temperature

Remark: The terms **on/off** as well as **STOP and OPERATION** could cause mix-ups; they are therefore defined as follows:

- On/off describes the existence/non-existence of the mains supply voltage
- **STOP** and **OPERATION** describe an operating condition which obviously only can exist when the system is switched on.

1.6 Declaration of Conformity

The Control Unit complies with the following standards and test regulations:

(to be fixed in the framework of the CE conformity standards)

10.01.96 Page 6/24

2 Installation/Start-up

2.1 Basic Requirements for System Installation

The following remarks have to be observed during installation and connection of the RO 1000 unit:

- The connected consumers must not exceed the max. admissible loads of the circuit outputs as well as the total output of the unit (see item 5) (in case of inductive loads, the phase angles have to be taken into account).
- All inductive consumers (valves, motors, contactors, transformers) of the unit have to be provided with suitable interference suppressors (RC element, varistor, diode)
- Should other devices with a high mains-borne interference level be installed in the surroundings of the
 control system, suitable external interference suppressors (line filters) have to be installed at the supply
 voltage input.
- The clamps must not be actuated with too much force.
- The screw-less terminal clamps are suitable for single-core and fine core conductors (without sleeves) of up to 0.5mm² (for sensor and analog output terminals) and up to 2.5 mm² respectively (all further terminals). According to the manufacturer's instructions it is not necessary to use core sleeves.
- All assembly activities have to be done in accordance with the corresponding VDE regulations.

2.2 Start-up

For the first start-up of the unit after its installation, the below-mentioned steps have to be carried out **in the given order**. Should the control system not operate in the described manner or if other malfunctions are discovered, the **electric supply has to be interrupted immediately** (and repaired by the manufacturer).

- 1. Install control and fix all terminal clamps. It has to be taken into account that the softener output is not protected by fuses. A short-circuit at this output may therefore destroy the conductor lines.
- 2. Switch on mains supply voltage \Rightarrow after at most 5 sec a text has to be displayed on the LC display (otherwise switch off \Rightarrow repair).
- 3. Carry out diagnostic program (see item 3.3) and test all inputs and outputs of the control unit. Should the fuse on the pc-board become active, one of the valve outputs is short-circuited.
- 4. Set operating modes and parameters (see item 4).
- 5. Calibrate sensors (see item 4.4.2).

10.01.96 Page 7/24

2.3 Function of Terminals

Terminal arrangement and functions are as follows:

No.	Code	Function	adm. max. load	terminal
1	PE	Mains supply - protective. conduct	1000 VA = max.	2,5 mm ²
2	N	Mains supply - neutral conductor	total output	2,5 mm ²
3	L	Mains supply - phase	performance	2,5 mm ²
4	ENT-PE	softener - protective conductor		2,5 mm ²
5	ENT-N	softener - neutral conductor	1000 VA	2,5 mm ²
6	ENT-L	softener - phase		2,5 mm ²
7	P1-PE	pump 1 - protective conductor		2,5 mm ²
8	P1-N	pump 1 - neutral conductor	1000 VA	2,5 mm ²
9	P1-Ls	pump 1 - phase		2,5 mm ²
10	MV1-PE	inlet valve - protective conduct		2,5 mm ²
11	MV1-N	inlet valve - neutral conductor	1000 VA	2,5 mm ²
12	MV1-Ls	inlet valve - closer		2,5 mm ²
13	MV2-PE	outlet valve - protective cond.		2,5 mm ²
14	MV2-N	outlet valve - neutral conductor	1000 VA	2,5 mm ²
15	MV2-Ls	outlet valve - closer		2,5 mm ²
16	MV2-Lo	outlet valve - opening contact		2,5 mm ²
17	MV3-PE	concentrate valve - protective cond.		2,5 mm ²
18	MV3-N	concentrate valve - neutral cond.	1000 VA	2,5 mm ²
19	MV3-Ls	concentrate valve - closer		2,5 mm ²
20	STO-W	trouble message - central contact	230 VAC / 4A	2,5 mm ²
21	STO-S	trouble message - closer	resp. 24V DC	2,5 mm ²
22	STO-O	trouble message operning contact	/1 A	2,5 mm ²
23	REG-M	mass - regeneration		2,5 mm ²
24	REG-E	input - regeneration		2,5 mm ²
25	MOTL-M	mass - motor protection/limitent		2,5 mm ²
26	MOTL-E	input - motor protection/limitent		2,5 mm ²
27	DRS-M	mass - pressure switch		2,5 mm ²
28	DRS-E	input - pressure switch		2,5 mm ²
29	NIVU-M	mass - min. top level		2,5 mm ²
30	NIVU-E	input - min. top level		2,5 mm ²
31	NIVO-M	mass - max. top level		2,5 mm ²
32	NIVO-E	input - max. top level		2,5 mm ²
33	SEN-S	sensor permeate screening		0,5 mm ²
34	SEN-A	sensor permeate A (white)		0,5 mm ²
35	SEN-B	sensor permeate B (brown)		0,5 mm ²
36	SEN-C	sensor permeate C (yellow)		0,5 mm ²
37	SEN-D	sensor permeate D (green)		0,5 mm ²

 $\textbf{Attention:} \ Prototypes \ are \ equipped \ with \ an \ additional \ PE \ terminal \ instead \ of \ the \ softener \ output \ (cl. \ 4.6)$

10.01.96 Page 8/24

3 Operational Scope

3.1 Operating settings

The control system allows to preselect the following operating settings (realization see item 4). The resulting control behaviours are described in the chapter Operating Conditions. The standard values (setting after parameter reset) are marked by * in the appropriate field.

ps LIM high function: Preselect if unit is to be switched off if LIM is exceeded

or if a failure message is sufficient

right of access: user/technician possible setting: * switch off

do not switch off

ps acknowledgment function: Prelesect if acknowledgment of failures is possible

in the normal level (=without password) or only in the

user/technician level (=with password).

right of access: technician

possible setting: * without password

with password

ps concentrate mode function: Preselect if <u>PRODUCTION</u> has to be followed by

CONCENTRATE FLUSH (with pump) or

CONCENTRATE DISPLACEMENT (without pump).

right of access: technician possible setting: * flush

displacement

ps tank type function: Prelesect if tank is equipped with an overflow or not.

Should the tank have an overflow, the produced water continues to flow into the tank during CONCENTRATE DISPLACEMENT/ FLUSH and DISCONTINUOUS

RINSE.

right of access: technician possible setting: * with

without overflow

10.01.96 Page 9/24

3.2 Operating parameters

The control system allows the following operating parameter settings (realization see item 4). The resulting behaviours are described in the chapter operating conditions. The values in brackets are the standard values after system reset (see item 4.4.4).

LIM function: Permeate limit value used to switch the unit off in

case limit is exceeded or if a <u>DISPOSAL</u> process is to be finished. If this value is exceeded during <u>PRODUCTION</u>, <u>RINSE</u> or <u>CONCENTRATE</u> <u>DISPLACEMENT/FLUSH</u> for the time defined for

t-delay LIM, an ALARM MESSAGE will be

activated.

right of access: user/technician

possible setting: meas. range $0.5-50\mu$ S/cm (40 μ S/cm)

Attention: the set value must be above aaLIM

aaLIM function: Permeate limit value activating an ALARM

MESSAGE in the display and on/off of the malfunction LED if this value is exceeded for the

time defined for t-delay aaLIM

right of access: user/technician

possible setting: $0.5-50\mu \text{S/cm} (10 \mu \text{S/cm})$

Attention: the set value must be lower than LIM

t-delay LIM function Time delay for wrong permeate limit value (see

above)

right of access: technician possible setting: 0-99 min (1 min)

t-delay aaLIM function: Time delay for advance alarm in case of wrong

permeate limit value (see above).

right of access: technician

possible setting: 0-99 min (5 min)

t-delay lack of pressure function: Time delay to release PRESSURE FAILURE if

PRESSURE SWITCH is inactive.

right of access: technician possible setting: 0-99s (1s)

t-delay at start function Period of time of permanent pressure at start of

operation after opening of the inlet valve before the

pumps begin to work.

right of access: technician possible setting: 0-9.9s (0.5s)

t-pressure available function: Period of time until PRESURE FAILURE is

released if pumps do not start after opening of inlet

valve.

right of access: technician possible setting: 0-99s (5s)

t rinse function Duration of a DISCONTINUOUS RINSE.

right of access: technician possible setting: 0-99 min (5s)

10.01.96 Page 10/24

t rinse interval function Time after which a <u>DISCONTINUOUS RINSE</u>

process is started provided that the control system was during that time in the operating condition

RINSE INTERVAL.

right of access: technician possible setting: 0-99h (0h)

t concentrate function Duration of a <u>CONCENTRATE</u>

DISPLACEMENT/FLUSH process at the end of a

PRODUCTION (TANK FULL active).

right of access: technician possible setting: 0-99min (1 min)

t min disposal funtion Minimum duration of a <u>DISPOSAL</u> process at the

beginning of a <u>PRODUCTION</u>. This is the minimum time after which the unit passes to <u>PRODUCTION</u> if the value drops below *LIM*.

right of access: technician possible setting: 0-999s (5s)

Attention: the set value must be less than t max

disposal. (Pay attention to units)

t max disposal function: Maximum duration of a DISPOSAL process. This

is the maximum time after which the value has to be below *LIM*, otherwise a failure message will be

given.

right of access: technician possible setting: 1-99min (60 min)

Attention: the set value must be greater than t min

disposal (Pay attention to units!)

t maintenance function Operating time (hour meter) after which a signal is

given that maintenance has to be carried out

(flashing **OPERATION**).

right of access technician

possible setting: 0-999999h (3500h)

Attention: zero setting means that no maintenance

message is given.

10.01.96 Page 11/24

3.3 Operating modes

When the control system is switched on, the following four operating modes exist:

STOP The control system does not carry out any production process. All outputs remain

inactive. Failures are not registered.

<u>OPERATION</u> The control system fulfills the production in accordance with the respective operating

conditions in the unit. As long as the unit status is <u>DISPOSAL</u>, <u>PRODUCTION ON</u>, <u>CONCENTRATE DISPLACEMENT/FLUSH</u> or <u>DISCONTINUOUS RINSE</u>, the current operating data (conductivity, temperature, etc.) are displayed one after the

other (rolling). Failures are registered, processed and displayed.

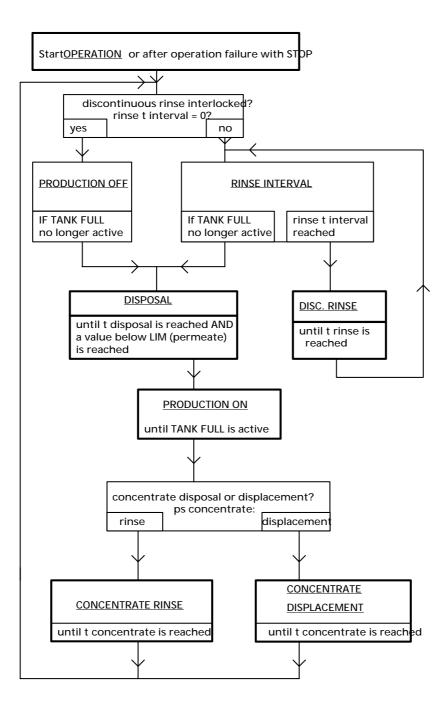
<u>DISINFECTION</u> The control system does not carry out any production process, but **INLET VALVE**,

OUTLET VALVE as well as the **PUMP** are switched on so that a disinfection can

be carried out. No failures are registered.

<u>DIAGNOSIS</u> The <u>DIAGNOSIS</u> is called via the main menue (see item 4.4.1). For diagnosis

purposes, all control outputs can be manipulated via the keyboard and the input


status (analog/digital) can be displayed (see item 4.4.5). **Attention:** Failures are **not** registered/displayed.

The current operating mode is maintained when the system is switched off, that means the control system will be in the same operating mode which was running when the system was switched off.

10.01.96 Page 12/24

3.4 Operating conditions

When the unit is in OPERATION the control system performs one of the seven possible operating conditions. The following diagram shows the various conditions as well as the reasons for status changes. For that purpose an error-free sequence of operations is assumed.

10.01.96 Page 13/24

3.5 Operating failures/failure messages

The control system is able to detect operating failures during <u>OPERATION</u> and <u>DISINFECTION</u> and to display them. Usually, the unit will be stopped if a failure occurs. However, operating settings exist for the failures <u>CY EXCEEDED</u> and <u>HARDWATER</u> which make it possible that such a failure is only displayed without interruption of the production. During the operating mode <u>DISINFECTION</u>, only a <u>MOTOR</u> FAILURE can be detected.

The different operating failures/failure messages as well as their reasons and consequences are as follows:

Denomination	Reason	Consequence
CY EXCEEDED	Cy perm> <i>LIM</i>	Unit switches off if ps LIM
		high = switch-off
FORCED STOP	FORCED STOP active	Unit switches off
MOTOR FAILURE/HARD	MOTOR FAILURE/	Unit switches off
WATER	LIMITENT CONTACT	
	active	
LACK OF PRESSURE	PRESSURE SWITCH active	Unit switches off

MAINTENANCE

When the preset maintenance interval is over, the LED display **OPERATION** starts to flash (but only if control system is in the operating conditions <u>DISPOSAL</u>, <u>PRODUCTION ON</u>, <u>CONCENTRATE DISPLACEMENT/FLUSH</u> or <u>DISCONTINUOUS RINS</u>E. This alarm message can only be switched off by a technician who has then to enter a new maintenance interval (see item 4.4.4).

Besides the above mentioned failures also other types of failure exist. These are erroneous calibration ranges (failure message on text display), internal system failures (flashing **FAILURE** light) and initialization failures (EEPROM fail message in text display immediately after having switched the system on or during operation). As these failures correspond to malfunctions which the user cannot repair, the supplier has to be informed immediately if such failures occur.

ATTENTION !!! As an internal system failure will interrupt program run, failures will not be monitored. Such a control system **must not** be used any more.

10.01.96 Page 14/24

4. Operation

4.1 User interface

The user interface of the RO 1000 consists of a text display (16x2 characters), a keyboard covered with a protective film (6 keys) and 7 indicator lights.

4.1.1 Indicator lights

The indicator lights correspond to the most important operating conditions of the unit. The control system has the following indicator lights:

OPERATION Active, if the control system is in the operating mode OPERATION and if at least

one pump is switched on. This indicator light will be a flashing light (instead of a

continous light) if the set maintenance interval has run out.

FAILURE Active, if there is an operating trouble. In this case, the reason is displayed. In case of

Cy alarm the failure LED flashes. Should the trouble light flash immediately after having the control system switched on, the reason is an internal system failure (see

item 3.5).

DISINFECTION Active, if the control system is in the operating mode <u>DISINFECTION</u>.

DISPOSAL Active, if the control system is in the operating condition DISPOSAL.

FORCED STOP Active, if the <u>FORCED STOP</u> input is activated and if the control system is in the

operating mode **OPERATION**.

TANK FULL Active, if the <u>TANK FULL</u> input is activated.

4.1.2 Keyboard

The control system has keys for the functions $UP \uparrow$, $DOWN \downarrow$, $LEFT \leftarrow$, $RIGHT \rightarrow$, $ENTER \rightarrow$ as well as ESC (on the equipment keyboard, symbols/arrows are used to identify some of them). They allow to call via the menu all functions and to modify the system settings/parameters.

4.1.3 Text display

The purpose of the LC text display is to indicate, besides the indicator lights, the current operating mode or the current unit condition respectively (normal level); it also serves for the (menu-assisted) user communication for control system settings (user/technician level).

10.01.96 Page 15/24

4.2 Basic elements

The whole user surface of the control system is composed by basis functions such as password entry, menu selection, selection of settings, numerical entries etc. The description of the basic functions will be followed by the operating elements of the menus for users/techniciens.

4.2.1 Password entry

The entry of the password is the only way to gain access from the normal level to the user/technician level. User and technician have different passwords.

For user's password entry, the following keys have to be actuated in the normal level, within one minute.

For technician's password entry, the following keys have to be actuated in the normal level, **within one minute**.

The control system then switches to the corresponding menu branch.

4.2.2 Selection of menu

A menu is used to select or call specific functions. It consists of several numerical menu points (lines) listed one below the other. The text display of the control system always shows two of these menu lines, that means it always displays a two-line section (window) of the whole menu.

If a function or a menu point has to be called in, the desired menu point has to be selected first using the \uparrow / \downarrow keys. If the menu consists of more than two lines, the displayed section is automatically displaced within the whole menu (scrolled), the selected menu point being marked with arrows at the left and right sides of the display (e.g. ">9 settings<").

This selected menu point is called-in with the \rightarrow key.

A menu is finished with the **ESC** key (return to normal level). At certain program points (settings, calibrations, uncommitted input) nested menus appear. That means that the selection of a menu point starts a further menu (sub-menu). In that case, the **ESC** key causes return to the preceding menu.

4.2.3 Selection

The selection serves to chose one out of different options (usually operating settings). When a selection is called in (e.g. via a menu) the name of the selection appears in the upper display line (operating settings), the lower line displays the current status (value). With the \uparrow / \downarrow keys all further options can then be displayed. As soon as the \downarrow key is pressed, the currently displayed option is then accepted (stored) as new operating setting.

A selection can be interrupted with the ESC key without having carried out any modification.

.

10.01.96 Page 16/24

4.2.4 Multiselection

The multiselection allows to select various arguments simultaneously (for the purpose of this paper, argument means any type of setting).

In the lowest line of the text display appears for that purpose a chain of "0" and "1". Each one of these characters represents an argument. A "0" argument is inactive, a "1" argument is active.

A curser (flashing block) can be moved with the \leftarrow / \rightarrow keys between the different characters (arguments), and the corresponding description of the argument then appears in the

upper display line (e.g. name of operating mode). An argument can be activated/inactivated with the \uparrow / \downarrow kev.

The current setting of all arguments is accepted/stored with the $\ \ \ \ \ \ \ \ \ \ \$ key.

4.2.5 Numerical editing

The numerical editing is required to set the internal operating parameter and to enter the adjusted values. The procedure is the same as used for decade switches.

When numerical editing is called-in (e.g. via a menu), the name of the operating parameter/adjusted value appears in the upper display line. The current value is displayed in the lower line.

A flashing block (cursor) always marks the figure which can be modified; this modification (new setting) can be achieved with the \uparrow / \downarrow keys. Cursor displacement is achieved with the \leftarrow / \rightarrow keys, so that other figures can be modified, too.

The displayed value is stored as new operating parameter when the \rightarrow key is actuated. The **ESC** key allows to interrupt the procedure without any storage even if a new figure was entered.

4.2.6 Alphanumerical editing

The alphanumerical editing is required to set the message text for the uncommitted input failure message. The procedure is the same as for numerical editing (see item 4.2.4), with the exception that the \uparrow / \downarrow keys do not only allow to select numbers but also letters (capital/small) and special characters.

4.2.7 Confirmations

Various menu activities require confirmations in order to avoid data entry errors. The user is asked to confirm that modifications of operating settings/parameters and adjustments are actually correct. Confirmation is done with the \rightarrow key (select "yes") followed by the \rightarrow key. Otherwise, the system will return to the level from which the function was called-in (e.g. menu) without any consequences (no modification wil be stored).

10.01.96 Page 17/24

4.3 Operating levels

Similar to the operating modes, the user surface has different operating levels:

Normal level: In this level, the text display shows the operating mode, the operating condition, the

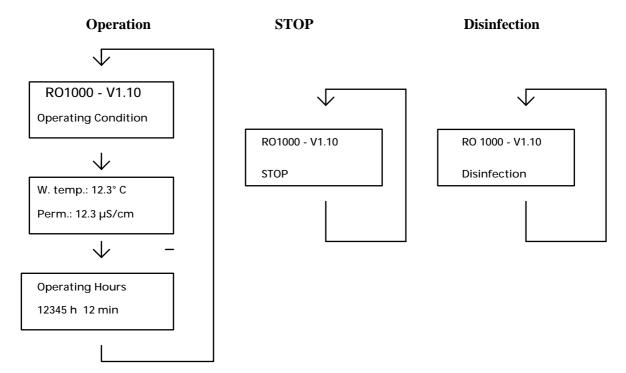
current measured values and operating values as well as special messages (maintenance message) by means of different (scrolling) masks (see 4.3.1).

User level: The user level (see 4.3.2) allows operation and setting of the most important

functions and operating settings/parameters respectively as well as the calibration of

the conductivity sensors.

Technician's level: The technician's level is a extended user level: It allows to carry out the functions of


the user level, to manipulate 'all operating settings/parameters and to fulfil a

hardware test by means of a specific diagnostic function.

The different operating levels and their functions as well as the operating options and the displayed texts (as far as possible) are described below.

4.3.1 Normal level

According to the operating mode, the sequence of displays in the normal level is as follows:

The only operation which is admitted is the acknowledgement of a failure (only for *ps acknowledgment* = without password); the purpose is to protect the control system against unintentional/unauthorized manipulations. When the system is switched on, it always is in the normal level, so that is also can be called the basic level.

10.01.96 Page 18/24

4.3.2 User's Level

Access to the user level is achieved by entering a user's password (see 4.2.1). This level allows operation and setting of the most important functions and operating settings/parameters respectively. The operating status is not displayed because display is used to represent the menus to do selections and editing.

The functional scope corresponds to that of the main menu (see 4.4.1), but without the menu points Setting and Diagnosis.

If there is no key actuation for more than 10 min. and provided that the current function does not correspond to the display of measured values, the control system automatically returns to the normal level for safety reasons.

4.3.3 Technician's level

The technician's level is an expanded user level. It allows to fulfill the functions at user's level, to manipulate **all** operating settings/parameters and to fulfill a hardware test by means of a diagnostic function. The functional scope covers all menus and sub-menus (see 4.4.).

Access to the technician's level is similar to that to the user's level, that means a specific password has to be entered (see 4.2.1). If there is no key actuation for more than 10 min. and provided that current function does not correspond to the display of measured values or a diagnostic process, the control system returns to the normal level.

10.01.96 Page 19/24

4.4 Menu structure

The menu structure of the user surface is shown below. Access to the main menu is achieved by entering a pass word (see item 4.2.1).

main menu]
1 ackn. failure	
2 operat. mode	
3 Cy permeate	
4 temp. permeate	
5 operat. hours	
6 Cy limits	
7 options alarm	
8 calibration	
9 settings	
10 diagnosis	

calibration menu			
1	Cy permeate		
2	temp. permeate		
3	calibr. reset		

1 t Cy LIM
2 t Cy alarm
3 t pressure lack
4 t delay at start
5 t press. available
6 t disc. rinse
7 t rinse interval
8 t concentrate
9 t disposal
10 t maintenance
11 ps alarm mess.
12 ps concentrate
13 ps tank type
14 inputs
15 ps language
16 system reset
· · · ·

setup menu

diagnosis menu				
1 digital input				
2 digital output				
3 lights				
4 Cy permeate				
5 permeate temp.				

10.01.96 Page 20/24

4.4.1 Main menu

The details of the different menu points of the main menu are described below.

Menu point:	Function:
1 Ackn. failure	This menu point allows to acknowledge an operating failure (the only possibility if ps acknowledgement = with password).
2 Operat. mode	This menu point allows to change the operating mode by means of a selection. For safety purposes, selection only can be made between <u>STOP</u> and <u>OPERATION</u> as well as <u>STOP</u> and <u>DISINFECTION</u> respectively (direct change-over from <u>OPERATION</u> to <u>DISINFECTION</u> is not possible).
2 Cy permeate	Permanent display of current permeate conductivity. To leave this menu point press one of the keys.
4 Temp. permeate	Permanent display of current permeat temperature. To leave this menu point press one of the keys.
5 Hour meter	Calling-in (display) of the operating hours meter.
6 Cy limits	Numerical entry of LIM and aaLIM.
7 Optional alarm	Setting (selection) of ps LIM high
8 Calibration	This menu point assures branching to the calibration menu (see item 4.4.3). The new calibration will be stored if the entered data are acknowledged before leaving the calibration menu.
9 Setting	This menu point assures branching to the setting menu (see item 4.4.4). The modification will be stored of the entered data are acknowledged before leaving the setting menu.
10 Diagnosis returns	This menu point assures branching to the diagnosis menu (see item 4.4.5). At the beginning of the diagnosis, all actuators of the unit are switched off. The sytem to the previous status if diagnosis is completed.

10.01.96 Page 21/24

4.4.2 Calibration menu

The calibration menu is used to adjust the sensors. The following functions are available:

Menu point:	Function:
1 Cy permeate	Calibration of permeate sensor. If the menu point '1 Cy permeate' is chosen, a submenu appears with two items: '1 min . Cy' and '2 max . Cy'.
	'1 min Cy': please remove the Cy sensor and press the ↓ key.
	'2 max Cy'
	Important!!! The temperature must be calibrated before calibration of the conductivity.
	Connect the Cy sensor. Now the current permeate conductivity has to be determined by means of a standard meter, and this value has to be entered by numerical editing. The entered value is equated with the current conductivity after actuation of the \d key.
2 temp.permeate	Calibration of permeate temperature sensor.
	For that purpose the current permeate temperature has to be defined with a standard meter, and this value has to be entered by means of numerical editing. The entered value is equated with the current temperature when the \d key is then actuated.
3 calibr. reset	This menu point allows to reset adjustment of the two measuring inputs to the internal standard values. ATTENTION!! Internal calibration is not a correct adjustment.

10.01.96 Page 22/24

4.4.3 Setting menu

The setting menu allows to modify the following operating settings/parameters:

Function:
Numerical editing of t delay LIM
Numerical editing of t delay aaLIM
Numerical editing of t delay lack of pressure
Numerical editing of t delay at start
Numerical editing of t pressure failure
Numerical editing of t rinse
Numerical editing of t rinse interval
Numerical editing of t concentrate
Numerical editing of t disposal
Numerical editing of t maintenance
Selection of ps acknowledgment
Selection of ps concentrate
Selection of ps tank type
Setting of input types (valve with open rest pos./opener)
Selection of ps language
As soon as this function is called-in and acknowledged, the internal hours meter will
be deleted (set to 0)

4.4.4 Diagnosis menu

The diagnosis allows direct display/manipulation of the input/output conditions for testing purposes. **ATTENTION!!!** Under these conditions, failure detection is **not active**.

Menu point:	Function:
1 digital input	Display of the current conditions of the digital inputs (see item 2.3). Display is like a multiselection, but with the difference that the conditions of the arguments cannot be set - they depend on the input conditions.
2 digital output	Manipulation of the digital circuit outputs (see item 2.3) by means of a multiselection.
3 lights	Manipulation of the lights (item 4.1.1) by means of a multiselection.
4 Cy permeate	Permanent display of the current permeate conductivity. This display can be cancelled by actuating one of the keys.
5 temp. permeate	Permanent display of the current permeate temperature. This display can be cancelled by actuating one of the keys.

10.01.96 Page 23/24

5. Technical Data

The following table contains all significant technical data of the RO 1000 control.

	min.	type	max.	unit
nominal service voltage	200	230	260	V
main frequenCy	47		63	Hz
nominal voltamps	5	_	10	VA
•				·
ambient temperature range (operation)	0	-	50	° C
ambient temperature range (storage)	-10	-	70	° C
relative air humidity	15	-	85	%
conductivity range	2	_	200	μS/cm
- accuraCy of measurement (ref. to range end	_	0.5	1	%
value without sensor)				, ,
- temperature range	0	-	40	° C
switching current of circuit inputs	0	-	30	mA
adm. relay load for 230 V AC	-	-	4	A
adm. relay load for 24 V DC	-	-	1	A
total installed load	-	-	1000	VA
total installed load - solenoid valves	_	-	250	VA
protection class	IP55			

10.01.96 Page 24/24

Settings RO 1000 Micro Process Pilot Control

1 Ackn.failure			
2 Operat.mode	STOP	When various settings	possible the factory
	OPERATION	adjustment is the first o	
	DISINFECTION	menue table.	
3 cy-permeate			
4 temperature			
5 hour meter			
6 cy-limits	lim: 050 μS/cm		
	war: 040 µS/cm		
7 ps lim. exc.	do no stop		
	do stop		
8 calibration	1 temp. permeate	XX.X: °C	
	2 cy-permeate	1 cond UNTEN	XXX µS/cm
		2 cond OBEN	XXX μS/cm
	3 calibrreset		
9 settings	1 t-delay-LIM	05 min	
<u> </u>	2 t-del.aa-LIM	01 min	
	3 t-low pressure	01 s (8 s)*	
	4 t-press.hys	9,9 s	
	5 t-press.TO	60 s	
	6 t-disc. rinse	00 min	
	7 t-inter rinse	00 h	
	8 t-concentrate	01 min	
	9 t-disposal	min: max:	
	40.1	005 s 60 min	
	10 t-maintenance	003500 h	
	11 ps-acknowl.	without password only with password	
	12 ps-concentrate	displacement	
	12 ps-concentrate	rinse	
	13 ps-tank-type	with overflow	
	, , , , , , , , , , , , , , , , , , ,	no overflow	
	14 inputs	1 extern.stop	normally closed
			normally closed
		2 motor ptotection	normally closed
			normally closed
		3 pressure switch	normally closed
			normally closed
		4 tank min	not active normally closed
			normally closed
		5 tank max	normally closed
		· · · · · · · · · · · · · · · · · · ·	normally closed
	15 language	english	
	16 ovet recet	deutsch	
40 diameter	16 systreset		
10 diagnostic	1 digit.input 2 digit.output	* for 3-ph	ase current/RO pump
	3 lights	101 0 pi	and canonario pamp
	4 cy-permeate		
	5 temppermeate		