Operating Instructions

Reverse-Osmosis-Systems UO 100/250/300/400 combi D

CE

Overview of contents

General information	A
Transport and storage	В
Technical data/ product description	С
Set-up and assembly	D
Placing the system in service / taking it out of service	E
Operation / monitoring	F
Malfunctions	G
Maintenance	Н
Preserving/Cleaning the system	I
Appendix	

-	R+I flowchart with components list	I
-	Circuit diagram	II
-	Control system manual	111
-	Operating Instructions for softener	IV
-	Operating Instructions for hardness monitor	V

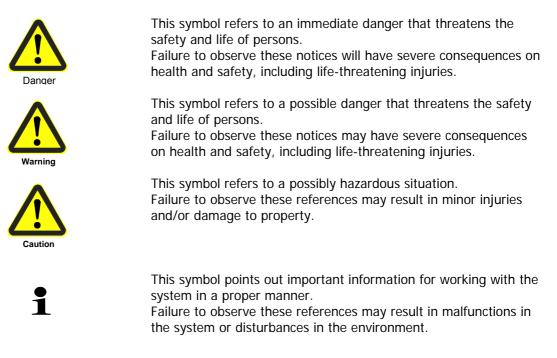
Imprint

All Rights Reserved.

The edition date on the cover sheet is definitive. Subject to technical changes.

These Operating Instructions may not be translated into foreign languages, reprinted, saved on data media or otherwise duplicated except with the express written approval of the manufacter.

Contents of Chapter A


1	. Notes on using the Operating Instructions	. 2
2	. General safety information	. 3
	2.1 Explanation of symbols and references	. 3
	2.2 Additional safety requirements	. 3
	2.3 Usage in accordance with intended purpose	. 3
	2.4 Operating staff	. 3
	2.5 Residual dangers	. 4
	2.6 Bringing the system to a stop in the event of an emergency	. 4
	2.7 Safety information for maintenance tasks	. 4
	2.7 Disposing of system parts and operating materials	. 4
	2.8 Unauthorized conversion and manufacturing replacement parts	. 4
	2.9 Warrantee claims and liability	. 4
3	. Basic principles of reverse osmosis systems	. 6
	3.1 The principle of reverse osmosis	. 6
	3.2 Calculation equations	. 6
	3.3 Temperature dependency of permeate output	. 7

1.Notes on using the Operating Instructions

Purpose:		tructions are intended for users of the system and n on how to operate and maintain the system
Availability:	The Operating Ins where the system	structions must always be available at the place is in use.
Subdivision:	by letters of the all Page 1. The header and pa each chapter, mak For information on	tructions consist of a number of chapters named phabet. An outline of all the chapters appears on age numbering, along with the letter identifying e it easier for you to orient yourself. the content of a specific chapter, please refer to e first page of that chapter.
Conventions/	01	Operating Instructions
abbreviations:	TD	Technical Documentation
	RO	Reverse Osmosis
	Permeate	Product water resulting from RO
	Product	Product water from the UP system
	Су	Conductivity
	-	Enumerated items
	Ē	Steps to be performed

2. General safety information

2.1 Explanation of symbols and references

2.2 Additional safety requirements

Country-specific requirements, standards and regulations must be observed.

2.3 Usage in accordance with intended purpose

The RO-system is used to desalinate softened water. The system must only be operated with water supplied in accordance with the quality described in Chapter C/2 and the operating parameters specified there.

The system must not be operated unless it is in proper working order. Any malfunctions must be rectified immediately.

2.4 Operating staff

Only persons who have read and understood these Operating Instructions are permitted to operate the system. When operating the system, it is particularly important to observe the safety information strictly.

2.5 Residual dangers

- Water damage	 To avoid accumulation of spills caused by leaks, the area in which the system is set up must be equipped with a floor drain and/or a leak monitoring system and corresponding alarm.
- Electrical shock	 Do not touch electrical components with wet hands. Before performing tasks on parts of electrical system, disconnect the system from the power supply.
- Mechanical force	- Parts of the system are under excess pressure of up to 25. Release the pressure from the system before repairs and

maintenance tasks.

2.6 Bringing the system to a stop in the event of an emergency

- Turn off the main switch
- Shut off the water supply

After remedying the damage:

- Open the water supply
- Turn on the main switch

2.7 Safety information for maintenance tasks

The operator must take pains to ensure that all maintenance, inspection and assembly tasks are performed by authorized and qualified professionals who have been sufficiently informed for the task at hand by thoroughly studying the Operating Instructions. These tasks must be properly performed by professionally trained staff members.

The system must be shut down and protected from being placed in operation again unintentionally before all repair and maintenance tasks. It is absolutely essential to observe the procedure described in these Operating Instructions for shutting down the system.

Before beginning tasks on the electrical equipment of the system, a check must confirm that power has been disconnected from the corresponding section of the system. In addition, the system must be secured to prevent it from being turned on again unintentionally.

Protective clothing suitable for the hazard at hand must be worn while performing the task.

2.7 Disposing of system parts and operating materials

When they need to be discarded, system parts must be disposed of according to local requirements including separately if so required.

2.8 Unauthorized conversion and manufacturing replacement parts

Conversion or modification of the system is only permitted with the approval of the manufacturer. The same applies to making changes in the programming for the control system. Original replacement parts and accessories authorized by the manufacturer enhance safety. Use of other parts will void the warrantee.

2.9 Warrantee claims and liability

This product corresponds to the state of the art and was designed and manufactured in accordance with applicable rules of the technology, after which it was subjected to a quality control process. If there should nevertheless be any grounds for complaint, please direct requests for replacement to the manufacturer of this product in accordance with the general terms and conditions of sale and delivery.

3. Basic principles of reverse osmosis systems

3.1 The principle of reverse osmosis

Osmosis is a process on which nearly all natural metabolic processes are based. If two solutions of varying concentrations are separated in a system by a semipermeable membrane, the solution with the higher concentration will always have a tendency to become more diluted. This process (osmosis) will continue until osmotic equilibrium is achieved.

In the process of reverse osmosis, the direction of the osmotic flow is reversed. To achieve this, pressure must be exerted on the concentrated solution. This pressure must be considerably greater than the osmotic pressure that arises due to the natural balancing of differing concentrations.

Synthetic membranes are used in water treatment systems that work on the principle of reverse osmosis. These membranes are permeable for water molecules. The content materials dissolved in the water are held back by the membranes. High pressure causes the concentrated solution (for example drinking water or process water) to flow through these membranes. The result is a separation of this solution into a partial flow with water in which the content materials that are held back are located (concentrate).

3.2 Calculation equations

Yield [%] = $\frac{\text{permeate output } [I/h] \cdot 100\%}{\text{feed water input } [I/h]}$

feed water input = Permeate output + concentrate output

Concentrate output [I/h] = $\frac{\text{permeate output [I/h]} \cdot 100\%}{\text{yield [\%]}}$ - permeate output [I/h]

Desalinization rate [%] = [1 - \frac{Cy_{\text{permeate}}}{Cy_{\text{raw water}}}] \cdot 100\%

3.3 Temperature dependency of permeate output

The permeate output of the system depends on the temperature of the feed water. The nominal output specified in the technical data and on the rating plate refers to the design temperature specified in Chapter C/2.

The actual output at a specific feed water temperature can be calculated from the following table using a correction factor.

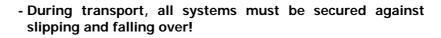
The specific temperature-related permeate output can be calculated according to the following calculation equation:

Permeate output at X °C = Rate output • Correction factor F

l in °	С
--------	---

Correction factor

Design temperature	Nominal output = 100%	1.00
-1		0.96
-2		0.92
-3		0.88
-4		0.84
-5		0.80
-6		0.77
-7		0.74
-8		0.70
-10		0.67
-11		0.64


1

If the system is operated at a higher feed water temperature than the design temperature, care must be taken not to exceed the maximum permeate output that is specified on the rating plate and in the technical data (C/2)!

After switching on the RO system permeate with high conductivity is produced for a short time. Therefore it is to be made certain during the interpretation of the peripheral equipment technology that a minimum running time of the RO system of at least 30 min per shifting process is ensured.

1. Transport and storage

- Systems of type RS and RSE, ND,KR, AS, ES, combi, ED,NF, UP and EP should be transported upright.
- Systems of type W should be transported lying down.
- Systems of type W/S may be transported either standing or lying down.

- The transport weight corresponds to the empty weight. For transport weights, please refer to the Technical Data in Chapter C/2.
- The system can be damaged by frost. Because of this, the system must be protected against frost and freezing during transport and storage.
- The maximum storage temperature is 40°C.
- The maximum storage duration for the system in original packing is 3 months at 20 °C. After that, the preservative fluid must be rinsed out and replaced if necessary.

Contents of Chapter C

1. '	Technical data	2
2.	Usage limits	3
3. I	Product description	3
3	.1 Rating plate	. 3
3	.2 Working principle diagram	. 3
3	.3 Functional description	. 3
3	.4 Short description of the components	. 4

1. Technical data

System		UO 100 combi D	UO 250 combi D	UO 300 combi D	UO 400 combi D
Code No.		420 109	420 084	420 118	420 090
Control		·	RO 500		·
Matching softener			HS SK 621		
Feed water specification					
Feed water pressure min./max.	bar		2/6		
Pressure fluctuations (limit)	bar		± 0.5		
Temperature min./max.	°C		5/35		
Connections					
Feed water	DN		20		
Permeate	DN		10		
Concentrate	HT		50		
Power consumption	kW	0.55			
Power connection	V/Hz	230/50			
Protection type		IP 54			
Output data					
Permeate outlet max.	l/h	100	250	300	400
Concentrate min.	l/h	33	83	100	133
Concentrate backflow	bar	14			
Permeate counterpressure max.	bar	0.3; prevent permeate backflow!			
Recovery	%	75			
Salt rejection rate	%	97			
Dimensions and weight					
Dimensions (HxWxD)	mm	1650x760x700			
Weight approx.	kg	135	140	155	155
Environmental data					
Max. ambient temperature	°C	40			
Relative humidity (air)	%	<95, non-condensing			

Systems are designed for drinking water without chlorine in accordance with the German Drinking Water Regulation with a salt content of 1000 mg/l and at a feed water temperature of 15 °C.

2. Usage limits

The limit values specified in Chapter C/2 "Technical Data" apply for usage of the system.

3. Product description

3.1 Rating plate

The rating plate is located on the front side of the system. It contains important information on the output and maximum operating parameters of the system.

To ensure fast and problem-free processing of warrantee claims, technical information or customer service, be sure to indicate the system type, item number and manufacturing number!

3.2 Working principle diagram

See the R+I diagram in the appendix

3.3 Functional description

Das durch den Vorfilter vorgefilterte Wasser gelangt über den Rohrtrenner zur Enthärtungsanlage. Die Enthärtungsanlage reduziert die Gesamthärte des Speisewassers auf einen Wert < 0,1 °dH. Über einen Härtekontrollsensor und einen Feinfilter wird das Weichwasser zur UO-Anlage geführt. Eine Pumpe fördert das Wasser mit hohem Druck (abhängig von der Anlagengröße) über die semipermeablen Membranen. Weitgehend von Salzen befreites Wasser (Permeat) gelangt durch die Membranen. Die zurückgehaltenen Salze werden mit dem Konzentrat kontinuierlich abgeführt.

Die Steuerung der Anlage überwacht und steuert während der Permeatproduktion und während der Stillstandszeiten alle wichtigen Funktionen.

3.4 Short description of the components

Pressure gauge prefilter (0Pr01)	Display of the inlet pressure.
Filter (0F01)	Protects the softener from impurities (filter fineness 100 μ m).
Pressure gauge prefilter (0Pr02)	Display of the outlet pressure
Line separator (0X01)	Separates the water treatment unit from the drinking water system
Softener (0X02)	Used to soften the drinking water
Hardness monitoring de- vice (1X02)	Continuously monitors soft water quality and generates an alarm message if a limit value is exceeded.
Pressure gauge fine filter inlet (1Pr01)	Display of the inlet pressure.
Fine filter (1F01)	Protects the RO membranes from impurities (filter fineness 5µm).
Pressure gauge fine filter outlet (1Pr02)	Display of filter outlet pressure
Sample removal tap for softened water (1V07)	Used to remove samples from the softened water of the system.
Inlet solenoid valve (1V01)	Is always open during permeate production.
Pressure switch (1Pr03)	
	Monitors the inlet pressure.
Pump (1P01)	Monitors the inlet pressure. Produces the pressure required for the reverse osmosis process.

pressure (1Pr05)

Pressure gauge (concen- trate pressure) (1Pr06)	Display of the concentrate pressure.
Pressure regulating valve (1V05)	Controls the amount of concentrate directed in front of the pump
Concentrate regulating valve (1V06)	Used to set the amount of concentrate to be led away
Flow meter for concentrate (1FI01)	Display of the RO concentrate quantity
Permeate measurement cell (1Q02)	Measures the conductivity of the permeate. The control system is used to turn off the system if a limit value is exceeded.
Permeate flow meter (1FI02)	Displays the permeate flow level
Control system	Monitors and controls all important functions during the operation of the system.

Contents of Chapter D

1. Set-up	. 2
1.1 Requirements for the set-up location	2
1.2 Setting up the system	2
2. Water-side connections	. 3
2.1 Necessary qualifications of the assembly staff	. 3
2.2 Making the hydraulic connections	. 3
3. Electrical connection	. 4
3.1 Necessary qualifications of the assembly staff	. 4
3.2 Connecting the power supply	. 4
3.3 Connecting the accessories / signal exchange	. 4

1. Set-up

1.1 Requirements for the set-up location

- The space required for the system may be derived from the measurements specified in Chapter C/21. In addition, there should be 1 m of space on each side available for operating and maintaining the system.
- The room in which the system is set up must meet the environmental conditions specified in Chapter C/2.
- The minimum bearing capacity at the set-up location must be 150% of the operating weight specified in Chapter C/2.
- The set-up surface must be even and run horizontally.
- The room must be well ventilated and not exposed to freezing temperatures.
- To avoid accumulation of spills caused by leaks, the area in which the system is set up must be equipped with a floor drain and/or a leak monitoring system and corresponding alarm.
- The necessary electrical connections must be available on the construction side (see Chapter C-1) and must be located no more than 2 m away from the system.

1.2 Setting up the system

- The system.
- Check over the delivery for completeness and transport damage. (See Chapter C-3.2 for scope of delivery). Any deviations or damage must be reported to the manufacturer immediately.
- Move the system carefully to the place provided for it with a suitable lifting device.
- The system must be set up on a holding surface in accordance with the requirements of Chapter C/2.

2. Water-side connections

2.1 Necessary qualifications of the assembly staff

1	The water-side connection must only be made by trained professional staff members. Observe general regulations (in German-speaking countries, DIN, DVGW, SVGW and ÖKGW) as well as local installation requirements while installing the system.		
2.2 Making the hydraulic co	onnections		
Inlet	Remove the sealing disks from the screw connection in the inlet. Connect the inlet.		
Permeate	 Remove the sealing disks from the screw connection in the permeate output. Connect the permeate output with the consumer line. 		
Concentrate	Remove the sealing disk from the concentrate line. Connect the concentrate output with the drain		
Waste water	© Connect the waste water (HT50) with the drain		
Caution	In standstill times of the system the max. back pressure of 0,3 bar must not be exceeded. The cross section of permeate piping by customer may only be one nominal width greater than the permeate output piping of the system. At a back presure > 0,3 bar and the danger of permeate backflow, a check valve has to be installed into permeate piping. It is only allowed to install a shut-off valve into permeate piping if also a relief valve is installed.		

3. Electrical connection

3.1 Necessary qualifications of the assembly staff

Electrical connection tasks may only be performed in Germany by an electrician certified by VDE in accordance with the applicable requirements.

3.2 Connecting the power supply

Before connecting the power supply, make certain that the corresponding main switch is turned off!

Make the power supply connection in the control cabinet with a fixed connection according to the circuit diagram.

3.3 Connecting the accessories / signal exchange

Connections for the

- Product container level
- Forced stop
- Combined malfunction

should be made according to the circuit diagram.

Contents of Chapter E

1. Placing the system in service	. 2
1.1 Qualifications of the commissioning staff	. 2
1.2 Placing the softener in service	. 2
1.3 Rinsing out the preservative fluid	. 2
1.4 Adjusting the operating parameters	. 3
2. Taking the system out of service	. 3

1. Placing the system in service

1.1 Qualifications of the commissioning staff

The system must be placed in service by qualified professionals.

Before the system is placed in service, all screw connections must be retightened.

1.2 Placing the softener in service

For the start up of the softener see the operating instruction in the appendix of this manual!

1.3 Rinsing out the preservative fluid

The preservative solution contains 1.5% sodium bisulfite and 20% glycerin. The preservation fluid should be drained out into the run-off channel in accordance with applicable regulations governing

channel in accordance with applicable regulations governing pouring and draining.

- Connect the product permeate with run-off channel
- Open valves 1V05 and 1V06 completely
- Open feed water
- Turn on main switch
- Set the system into operation (see Chapter F) and rinse for minimum 30 minutes

The higher permeate conductivity during the rinsing of the system can cause a shut down of the system. In this case quit the malfunction (see Chapter F) and continue rinsing.

Ť

1.4 Adjusting the operating parameters

- Adjust min. concentrate flow (see chapter C/2) at 1FI01 with valve 1V06
- ^{CP} Adjust permeate flow (see Chapter C/2) at 1Fl02 with valve 1V05
- If necessary adjust concentrate recirculation (see Chapter C/2) with valve 1V06
- Record the operating data of the system on a control sheet (see Chapter H)
- Turn off the system
- ^{CP} Reconnect the permeate with the tank or consumer

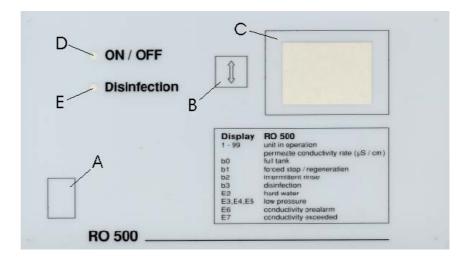
In no event should the values specified in the technical data for permeate output, recovery, operating pressure and product output be exceeded.

1

1

The permeate output of the system depends on the temperature of the feed water. For further information see Chapter A/3.2.

2. Taking the system out of service


Taking the system out of service refers to a down time of >30 days for the system. When the system is taken out of service, it must be preserved.

For information on preserving the system, please see chapter I.

Contents of Chapter F

1. Operating and display components	. 2
2. Operating states	. 3
3. Short description of the RO 500 control system	. 3
3.1 Turn on system	3
3.2 Turn off system	3

1. Operating and display components

	Benennung	Funktion	
А	Main switch	- Turns the system on and off	
		- Störungsquittierung	
В	Key button	- Call up desinfection	
		- Call up calibration	
С	Display	Display of:	
		- current conductivity of permeate	
		- current operating state	
		- malfunction	
D	LED operation	Permanent:	
	(green)	\rightarrow system in operation, no malfunc-	
		tion	
		Flashing:	
		→ malfunction active	
E	LED desinfection	Permanent:	
	(red)	→ desinfection activ	

1

For additional information on the function and operation of the RO 500 control unit, please refer to the RO 500 control unit manual in the appendix of these Operating Instructions.

2. Operating states

Operation	Display: <mark>cy</mark> Input NVO (terminal 21,22) closed Inlet valve 1V01 opened, pump 1P01 in operation System is producing permeate
Tank full	Display: <mark>b0</mark> Input NVO (terminal 21,22) opened System is turned off
Discont. rinsing	Display: b2 Time-controlled permeate production, if operating state Tank full has been active for the set time.
Forced stop	Display: <mark>b1</mark> Input REG (binding post 23,24) opened System is turned off till Input REG closed again
Desinfection	Display: b3 System in operation without any safety devices

3. Short description of the RO 500 control system

3.1 Turn on system	 ✓ Main switch 0/I (A) in position I → Display: 88: Initialisation → Display: b0: Tank full → Display: 15: Operation with display of coductivity of permeate (e. g. 15 µS/cm)
3.2 Turn off system	Main switch 0/I (A) in position 0

For additional information on the calibration and settings of the RO 500 control unit, please refer to the RO 500 control unit manual in the appendix of these Operating Instructions.

1

Contents of Chapter G

1. General information	. 2
1.1. Malfunction message to the manufacturer	
1.2. Malfunction display	
1.3. Malfunction reset	
2. Malfunction table	. 3

1. General information

The use of high-quality individual components and installing safety and monitoring equipment in our systems allows us to reach a very high level of operational availability.

If an operating malfunction should nevertheless arise, the error can easily be detected using the following malfunction table and the cause eliminated.

If serious malfunctions occur, please contact the manufacturer (see rating plate).

Only qualified professional personnel with the appropriate training should eliminate malfunctions, taking into consideration the safety requirement in Chapter A of these Operating Instructions!

Power must be disconnected from the system before beginning these tasks, and the system must be protected to ensure it is not turned on again unintentionally!

Pressure must be released from all lines.

1.1. Malfunction message to the manufacturer

To ensure effective help in resolving malfunctions, please have the following information on hand:

- Manufacturing number
- Item number
- System type
- Log sheets and maintenance sheets from the last 4 months
- **1.2. Malfunction display** green operation-LED is flashing - **E**<fault number> appears in the display
- **1.3. Malfunction reset** Switch off system for a short time After turning on the system again, the malfunction is eliminated

2. Malfunction table

Malfunction	Cause	Remedy		
Control display dark	Power supply interrupted	Make power supply connection		
	10 A fuse F1 defective	Unscrew the front plate and		
	200 mA fuse F2, F3 defective	replace the fuse in question		
	Flat band cable between the	Unscrew the front plate and plug		
	motherboard and the display	the cable back in		
	unplugged			
	Control system defective	Replace the control system		
Display E2: Hard water	Hard water sensor triggered (if	- Check the soft water quality		
	present)	- Check the sensor and replace if necessary		
	Wire jumper defective	Restore the wire jumper		
Display E3, E4, E5:	Feed water pressure too low	- Check the pressure difference		
Low pressure		on the softener		
		- Increase the feed water		
		pressure		
	Filter blocked	Replace the filter cartridge		
	Pressure switch defective	Replace the pressure switch		
	1V01 input valve defective	Replace the valve		
Display E7 :	Conductivity of feed water too	Calculate desalinization rate		
Cy of permeate to high	high	Target: > 97%		
	Desalinization rate too low	After consultation with the		
		manufacturer:		
		- Clean RO modules		
		- Replace RO modules		
System doesn 't start	Display b0 tank full, although	Level switch defective		
	permeate tank empty			
	Display 1-99 system in	Pump defective		
	operation			
	Display b1 forced stop	Connected softener is in		
		regeneration		
Permeate output too low	Feed water temperature too low	Calculate permeate output		
		according to Chapter A3.3		
	Permeate counterpressure too	Check permeate line		
	high			
	Modules blocked	After consultation with the		
		manufacturer:		
		- Clean RO modules		
		- Replace RO modules		

Contents of Chapter H

1. Maintenance and monitoring tasks	. 2
1.1 Safety information	. 2
1.2 General information	
2. Logging operating parameters	. 3
3. Maintenance	. 4
3.1 Maintenance tasks	. 4
3 2 Performing a concentrate rinse (water brushing)	. 5

1. Maintenance and monitoring tasks

1.1 Safety information

The operator must ensure that all maintenance, monitoring and assembly tasks are performed by authorized and qualified trained personnel.

The system must be shut down and protected from being placed in operation again unintentionally before all repair and maintenance tasks.

Before beginning tasks on the electrical systems and equipment, a check must confirm that power has been disconnected from the system. In addition, the system must be secured to prevent it from being turned on again unintentionally.

Protective clothing suitable for the hazard at hand must be worn while performing the maintenance tasks.

Immediately after the maintenance tasks are completed, all safety and protective equipment must be set back in place and functionality restored.

1.2 General information

To ensure long-term problem free operation of the system, maintenance tasks must be performed at regular intervals and a record must be kept of operating parameters!

The record of operating parameters and maintenance tasks should be kept by the operator of the system himself.

Signing a maintenance contract with the supplier makes it possible for the supplier to take over the responsibility of performing regular maintenance tasks on the system.

A record book should be kept to record operating parameters. It is located in the appendix of these operating instructions. The purpose of this record keeping is to have continuous documentation of the operating parameters. This makes it easier to detect a drop in output or incorrect functionality of the system and then to eliminate the problem.

The documentation of maintenance tasks should be kept on the maintenance log that is provided for this purpose.

2. Logging operating parameters

The following parameters must be checked and recorded **weekly**:

Parameter	Measurement point/remarks				
Hardness feed water	Check with the hardness kit on the 0V01 tap				
Conductivity of soft water	Measurement with Cy measuring instrument				
pH value/ Temperature of feed water	Measurement with pH value				
Residual hardness in soft water	Measurement with the hardness kit on the 1V07 tap				
Stock of salt in the brine tank	Check stock of salt and refill. Refill-interval depends on flow quantity!				
Filter/fine filter inlet pressure	0Pr01 pressure gauge				
Filter/fine filter outlet pressure	0Pr02 pressure gauge				
Operating pressure	1Pr05 pressure gauge				
Concentrate pressure	1Pr06 pressure gauge				
Permeate output	1FI02 flow meter				
Concentrate output	1FI01 flow meter				
Conductivity of permeate	Control display				
Conductivity of permeate	Control display				
Desalinization rate RO	For calculation see Chapter A 3.2				
Absence of leaks in the system	Check system for damages or leaks				

Minor fluctuations in the conductivity of the permeate and permeate output are normal. The effect of the temperature or a fluctuating conductivity may be reasons for this. When the desalinization rate drops below 97% or there is a drop in permeate output of about 10%, a concentrate rinse should be performed (H/2.1).

3. Maintenance

Maintenance tasks should be performed when needed, but no less often than at the maintenance specified intervals!

3.1 Maintenance tasks

The following maintenance tasks should be performed:

System part	Task to be performed	Maintenance interval		
Filter (0F01/1F01)	Replace the fine filter cartridges and clean the filter housing - 3 months - if the pressure drop by 0.8 bar			
Pressure switch	Functional test by blocking off the feed water inlet \rightarrow RO must switch off			
Line separator	Functional test by blocking off the feed water inlet → The spring of the line separator must Irelax			
Sensor of hardness monitoring device	replace sensor	- 12 months - when sensor triggered off		
- Conductivity cell(s) - pH-sensor (if existing)	Check of parameters with reference device, if necessary new calibration	 on start-up 1 year if quality of feed water changes 		
Softener	See operating instruction in the appendix			
Accessories	see operating instructions in the appendix			

3 2 Performing a concentrate rinse (water brushing)

During a concentrate rinse, the increase in the flow of concentrate flows more strongly through the membrane(s). Because of this, soluble accretions are more readily removed and rinsed away.

The duration of a "water brushing" should be at least 60 minutes, and it should be performed as follows:

- Log record of actual values
- Open the 1V06 concentrate valve
- Open the 1V05 pressure control valve
- Allow to rinse for at least 60 minutes
- Adjust the operating parameters to the target values
- Log record of actual values

Note: If the conductivity of the permeate does not improve permanently after a concentrate rinsing, a chemical cleaning of the membranes must be performed.

In this case, it is essential to contact the supplier to agree upon the further procedure!

Log sheet

Customer:_____

System Type:_____

Item No.:_____

Placed in service on:_____

		Values		1
Date		values when placed in service		
Hardness feed water	°dH			
Conductivity of soft water	°µS/cm			
pH value				
Temperature of feed water	°C			
Residual hardness in soft water	°dH			
Stock of salt in the brine tank	-			
Filter/fine filter inlet pressure 0Pr01/1Pr01	bar			
Filter/fine filter outlet pressure 0Pr02/1Pr02	bar			
Operating pressure 1Pr05	bar			
Concentrate pressure 1Pr06	bar			
Permeate output 1FI02	l/h			
Concentrate output 1FI01	l/h			
Conductivity of permeate	µS/cm			
Desalinization rate RO	%			
Absence of leaks in the system				

Note: The values when placed in service must be entered when the system is placed in service.

After that, this log sheet should be duplicated. As described in chapter H, the operating parameters should be documented weekly.

If there is a significant deviation in actual values from the values when placed in service, the operator should contact the supplier and if appropriate send this log to the supplier as well.

Maintenance log

Customer: _____

System type: _____

Item No.: _____

Placed in service on: _____ CW _____

1. Quarter / year: _____

System part	CW 1	CW 2	CW 3	CW 4	CW 5	CW 6	CW 7	CW 8	CW 9	CW 10	CW 11	CW 12	CW 13
Filter (0F01/1F01)													
Pressure switch													
Line separator													
Sensor of hardness monitoring device													
Conductivity cell pH-sensor (if existing)													
Accessories													

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

Maintenance log

Customer: _____

System type: _____

Item No.: _____

Placed in service on: _____ CW _____

2. Quarter / year: _____

System part	CW 14	CW 15	CW 16	CW 17	CW 18	CW 19	CW 20	CW 21	CW 22	CW 23	CW 24	CW 25	CW 26
Filter (0F01/1F01)													
Pressure switch													
Line separator													
Sensor of hardness monitoring device													
Conductivity cell pH-sensor (if existing)													
Accessories													

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

Maintenance log

Customer: _____

System type: _____

Placed in service on: _____ CW _____

3. Quarter / year: _____

System part	CW 27	CW 28	CW 29	CW 30	CW 31	CW 32	CW 33	CW 34	CW 35	CW 36	CW 37	CW 38	CW 39
Filter (0F01/1F01)													
Pressure switch													
Line separator													
Sensor of hardness monitoring device													
Conductivity cell pH-sensor (if existing)													
Accessories													

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

Maintenance log

Customer: _____

System type: _____

Item No.:

Placed in service on: _____ CW _____

4. Quarter / year: _____

System part	CW 40	CW 41	CW 42	CW 43	CW 44	CW 45	CW 46	CW 47	CW 48	CW 49	CW 50	CW 51	CW 52	(KW 53)
Filter (0F01/1F01)														
Pressure switch														
Line separator														
Sensor of hardness monitoring device														
Conductivity cell pH-sensor (if existing)														
Accessories														

Note: Each maintenance task should be documented with a date and the initials of the person performing the task. Copies should be made of the maintenance log before the first entries are made!

Contents of chapter I

1	Preserving the system	. 2
	1.1 General points	2
	1.2 Preserving options	2
	1.3 Materials required	2
	1.4 Connecting the preservation tank1.4.1 For systems without cleaning connections1.4.2 For systems with cleaning connections (optional)	2
	1.5 Preparing the preserving solution	3
	1.6 Executing the preservation procedure	4
	1.7 Composition of the preserving solution	4
2	Cleaning the system	. 5
	2.1 General points	5
	2.2 Materials required	5
	2.3 Connecting the cleaning tank	5
	2.4 Preparing the cleaning solution	6
	2.5 Executing the cleaning procedure	6
	 2.6 Cleaning solutions 2.6.1 Acid cleaning 2.6.2 Alkali cleaning 	8
		0

1. Preserving the system

1.1 General points

After three months at most the preserving agent should be flushed out and replaced if necessary.

When the system is shut down for more than thirty days, it must be preserved.

When it is put into operation again, please follow the procedure described in chapter E of this operating manual.

The preserving solution contains 1.5% of sodium bisulphite and 20% of glycerine.

The preserving solution should be fed into the pipelines in accordance with the directives that apply in the given case.

1.2 Preserving options

- Sodium bisulphite: preserving without antifreeze
- Sodium bisulphite + glycerine: preserving with antifreeze, to a temperature of 10° C

1.3 Materials required

- Preserving tank with locking valve
- 3 connecting tubes
- Preserving/neutralisation chemicals: sodium bisulphite (art. no. 530014) and glycerine (art no. 530024)
- Protective clothing (goggles, gloves, apron)

1.4 Connecting the preservation tank

- Switch off system
- $\ensuremath{^{\textcircled{\tiny \ensuremath{\mathbb{C}}}}}$ Close the feed water inlet
- 1.4.1 For systems without cleaning connections
 - Set up the preservation tank at a height greater than that of the system, so as to ensure that the preserving solution will flow into the RO system without any difficulty
 - ^C Close off the valve on the preservation tank
 - Detach the feed water inlet, the permeate pipe and the concentrate pipe of the RO system

- [©] Dismantle fine filter 1F01 (5µm)
- The connecting tubes should be connected as follows:
 - Connect the outlet from the preservation tank with the union "filter outlet"
 - Set up a tube connection between the preservation tank and the concentrate outlet of the RO system
 - Set up a tube connection between the preservation tank and the permeate outlet of the RO
- 1.4.2 For systems with cleaning connections (optional)
 - Set up the preservation tank at a height greater than that of the system, so as to ensure that the preserving solution will flow into the RO system without any difficulty
 - ^C Close off the valve on the preservation tank
 - ^(C) The connecting tubes should be connected as follows:
 - Connect outflow of cleaning system with 1V10 cleaning connection
 - Set up a tube connection between preservation tank and 1V12 concentrate cleaning connection
 - Set up a tube connection between preservation tank and 1V11 permeate cleaning connection

1.5 Preparing the preserving solution

Danger of fumes!

In handling cleaning chemicals, please have regard to the general instructions for avoidance of accidents and to what is stated in the relevant safety data sheet.

When pouring the chemicals into the preservation tank, protective clothing should be worn – protective goggles, rubber gloves and rubber apron

- Charge the preservation tank with a quantity of soft water as specified in the table (see 1.7, depending on the size of the system).
- ^C Check that the connections are adequately sealed.
- Prepare the preserving solution by adding the chemicals (as shown on table) to the preservation tank.

Important:

Chemicals should be added with caution - stir constantly!

1.6 Executing the preservation procedure

- Open the 1V06 concentrate control valve and the 1V05 pressure control valve completely
- Put the three-way ball valves (1V11 and 1V12) in "Flushing" position*
- Open the 1V10 tap*
- © Open the locking valve on the preservation tank
- Switch the RO system to "Disinfection" operating mode (see control manual)

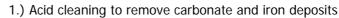
Warning:

- There are no safety facilities when the system is running!
- $\ensuremath{^{\textcircled{\ensuremath{\mathbb{C}}}}}$ Let the preserving solution circulate for ten minutes
- Switch off the RO system (see control manual)
- $\ensuremath{^{\textcircled{\mbox{\scriptsize Close}}}}$ Close the locking fittings on the preservation tank
- Close the 1V10 tap*
- Put 1V12 three-way ball valve in "Operational" position*
- [©] Detach the tube connections
- Close off feed water input and permeate and concentrate outlets with sealing disks
- Dispose of preserving solution (see 1.1 "General points")
- * Only for systems with cleaning connections

1.7 Composition of the preserving solution

	Permeate output	Soft water	Sodium	Glycerine
	of the system	supply	bisulphite	
	l/h	I	powder	I
			g	
Art. no.			530 014	530 024
Conc. of chemicals			97%	86,5%
	20 - 50	10	100	1,6
	60 - 170	15	150	2,5
	220 - 450	20	200	3,3
	600 - 1000	30	300	4,9
	1500 - 2500	60	600	9,8
	3000 - 5000	80	800	13,0
	- 10.000	160	1600	26,0
	- 15.000	240	2400	39,0
	- 20.000	320	3200	52,0
	- 30.000	750	7500	78,0

The pH value of the preserving solution is 4 or thereabouts.


2. Cleaning the system

1

2.1 General points

If the conductivity of the permeate rises by as much as 15%, or if the permeate output falls by as much as 10%, it is recommended that the membrane modules should be cleaned.

There is a distinction to be made between two types of cleaning:

2.) Alkali cleaning to remove organic impurities

Generally cleaning should be carried out in the following sequence: alkali \rightarrow acid \rightarrow alkali

Please discuss the type of cleaning with the manufacturer before carrying it out.

Cleaning solution should be disposed with in adherence to the local or country-specific requirements!

2.2 Materials required

- Cleaning tank with locking valve
- Three connecting tubes
- Universal indicator paper, pH 0-14 (art. no. 630074)
- Preserving/ neutralising chemicals (see 2.6 "Cleaning solutions")
- Conductivity measurement device for comparative measurement
- Protective clothing (goggles, gloves, apron)

2.3 Connecting the cleaning tank

see section 1.4

2.4 Preparing the cleaning solution

2.4 Preparing the cleaning	
	Danger of fumes! In handling cleaning chemicals, please have regard to the general instructions for avoidance of accidents and to what is stated in the relevant safety data sheet.
Danger	When pouring the chemicals into the cleaning tank, protective clothing should be worn – protective goggles, rubber gloves and rubber apron!
	 Charge the cleaning tank with the quantity of soft water specified in the table. Check that the connections are adequately sealed Prepare the cleaning solution by adding the chemicals (as shown on table 2.6) to the cleaning tank.
Important:	Chemicals should be added with caution – stir constantly!
2.5 Executing the cleaning	procedure
	Provide the sector
	Switch off the system Close the feed water inlet
Charging the system with the cleaning solution	Put three-way ball values (1V11 and 1V12) in "Cleaning" position* Open the 1V10 tap*
	Open the 1V06 concentrate control valve and the 1V05 pressure control valve completely
	Open the locking valve on the cleaning tank
	Switch the RO system to "Disinfection" operating mode (see control manual)
Warning:	There are no safety facilities when the system is running!
Time needed for the cleaning solution to be effective	 Let cleaning solution circulate for between 30 and 60 minutes Switch off RO system (see control manual) Close locking valves on the cleaning tank

Dispose of cleaning solution (see 1.1, "General points")

Close 1V10 tap*

Flushing out the system

- Open feed water inlet
- Switch RO system to "Disinfection" operating mode (see control manual)
- Flush out the system for at least 45 minutes. Here the flushing liquid that emerges should be disposed of a quantity at a time (see 1.1, "General points")
- ^{CP} Switch off RO system (see control manual)
- ^{The connecting tubes}
- Reconnect the feed water inlet and permeate and concentrate outlets
- ^C Put the 1V11 and 1V12 taps back into operating position*

Do not terminate the cleaning procedure until the pH value of the concentrate is the same as the pH value of the feed water.

* only for systems with cleaning connections

1

The temperature of the cleaning solution must not exceed 35° C! If the pH value shows no further change between the input and outflow of the cleaning solution, the cleaning procedure may be terminated.

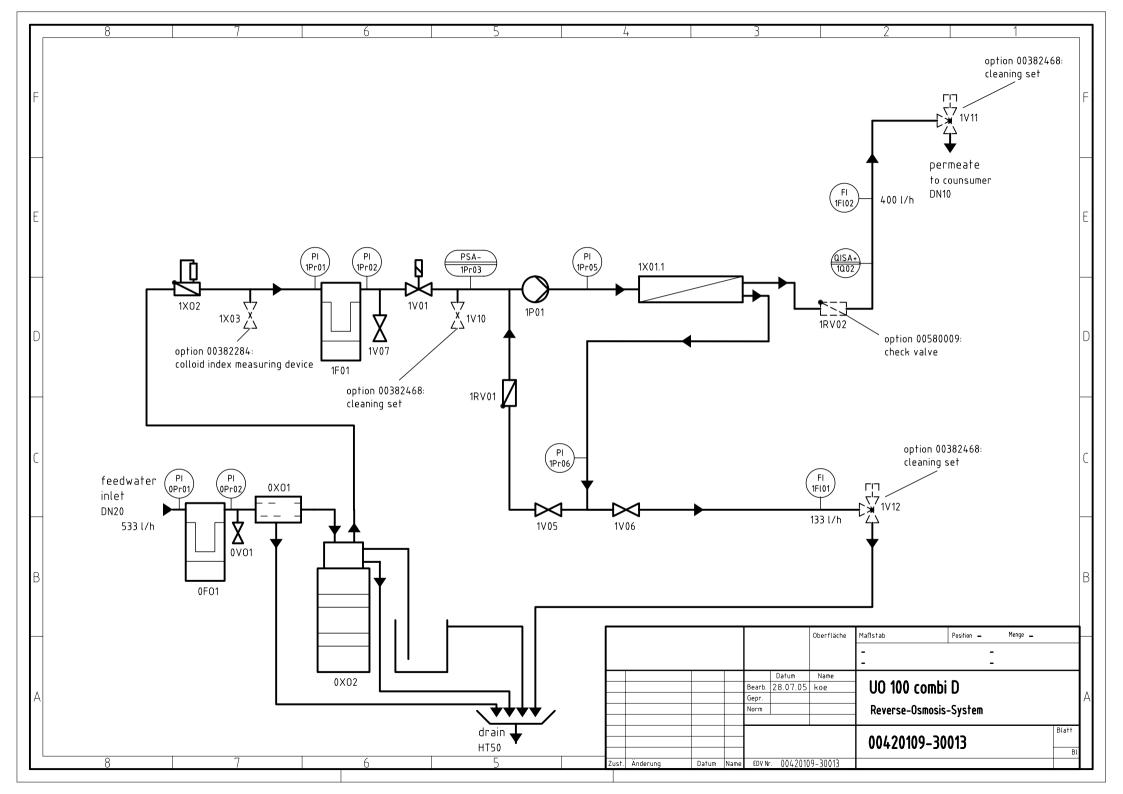
2.6 Cleaning solutions

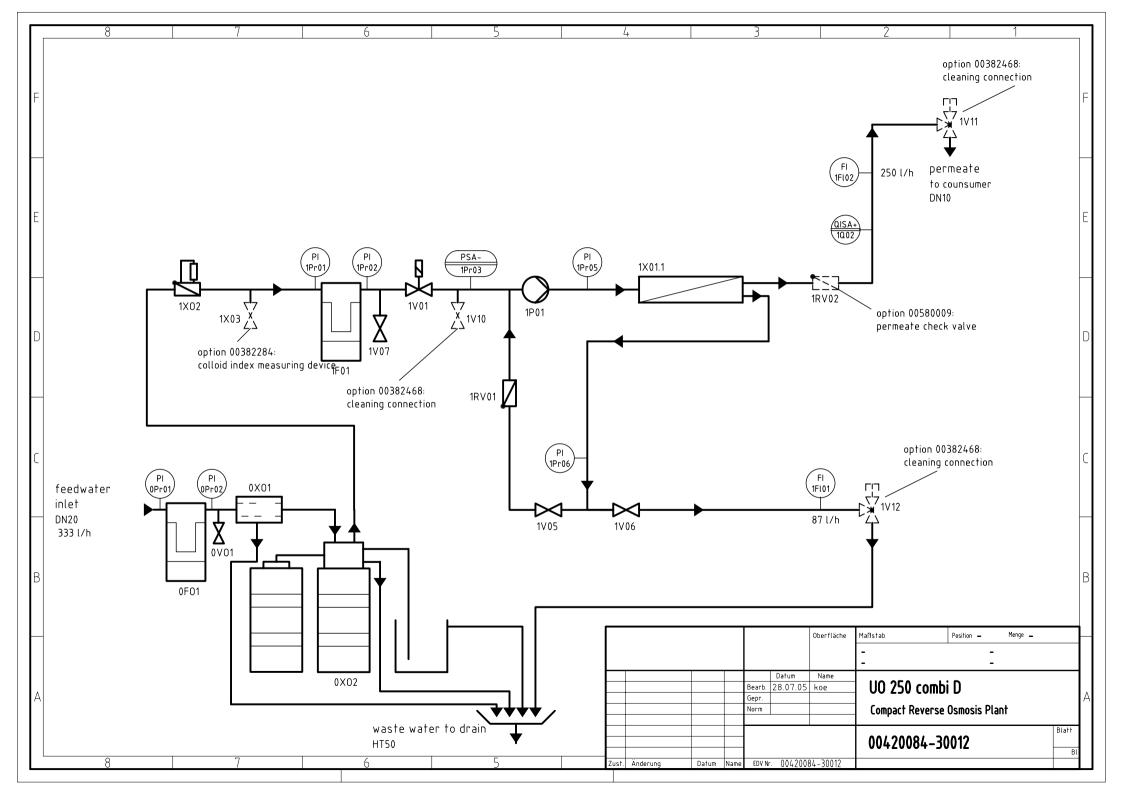
2.6.1 Acid cleaning

			Cleaning option 1	Cleaning option 2
	Permeate output	Soft water	Citric acid	Hydrochloric
	of the system	supply	powder	acid
	l/h		kg	ml
Art. no.			530 015	530 13
Conc. of chemicals			100%	33%
	50 - 250	50	1,0	250
	600 - 1500	100	2,0	500
	2000 - 3500	200	4,0	1000
	4000 - 5000	200	4,0	1000
	6000 - 8000	300	8,0	1500
	10.000 - 15.000	500	10,0	2500
	- 18.000	750	15,0	3750
	20.000 - 25.000	1000	20,0	5000

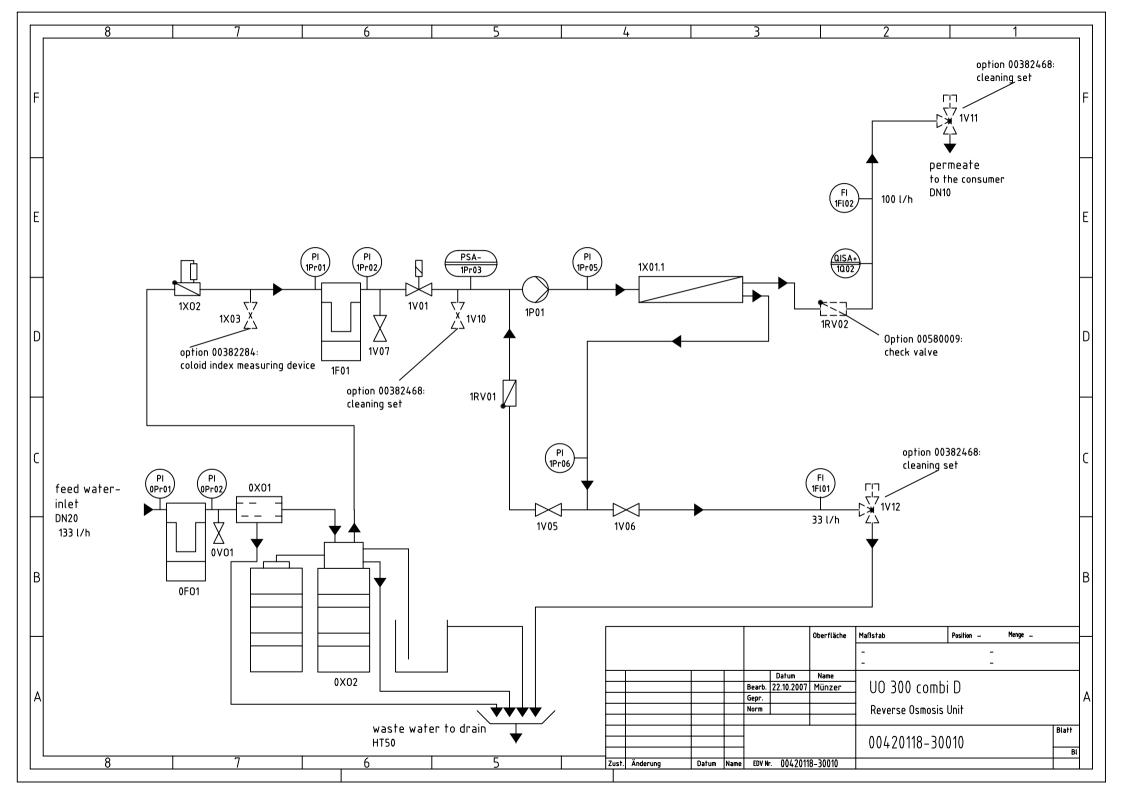
The pH value of the preserving solution is 2 or thereabouts. It should not be allowed to fall below this level.

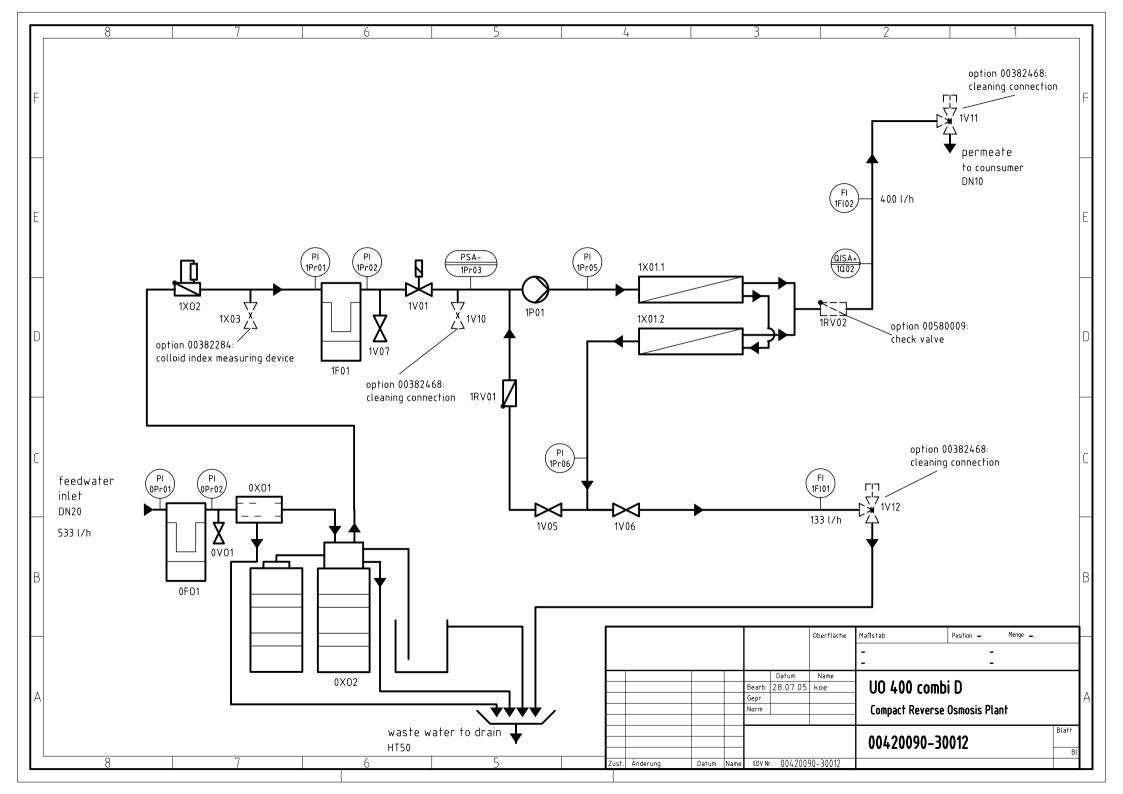
2.6.2 Alkali cleaning


				eaning otion 1	Cleaning option 2
	Permeate output	Soft water	NaOH-	Sodium dodecyl	HC310
	of the system	supply	flakes	sulphate	
	l/h	I	g	g	
Art. no.			530 027	530 21	530 051
Conc. of chemicals			100%	90%	-
	50 - 250	50	50	15	250
	600 - 1500	100	100	25	500
	2000 - 3500	200	200	50	1000
	4000 - 5000	200	200	50	1000
	6000 - 8000	300	300	75	1500
	10.000 - 15.000	500	500	125	2500
	- 18.000	750	750	190	3750
	20.000 - 25.000	1000	1000	250	5000

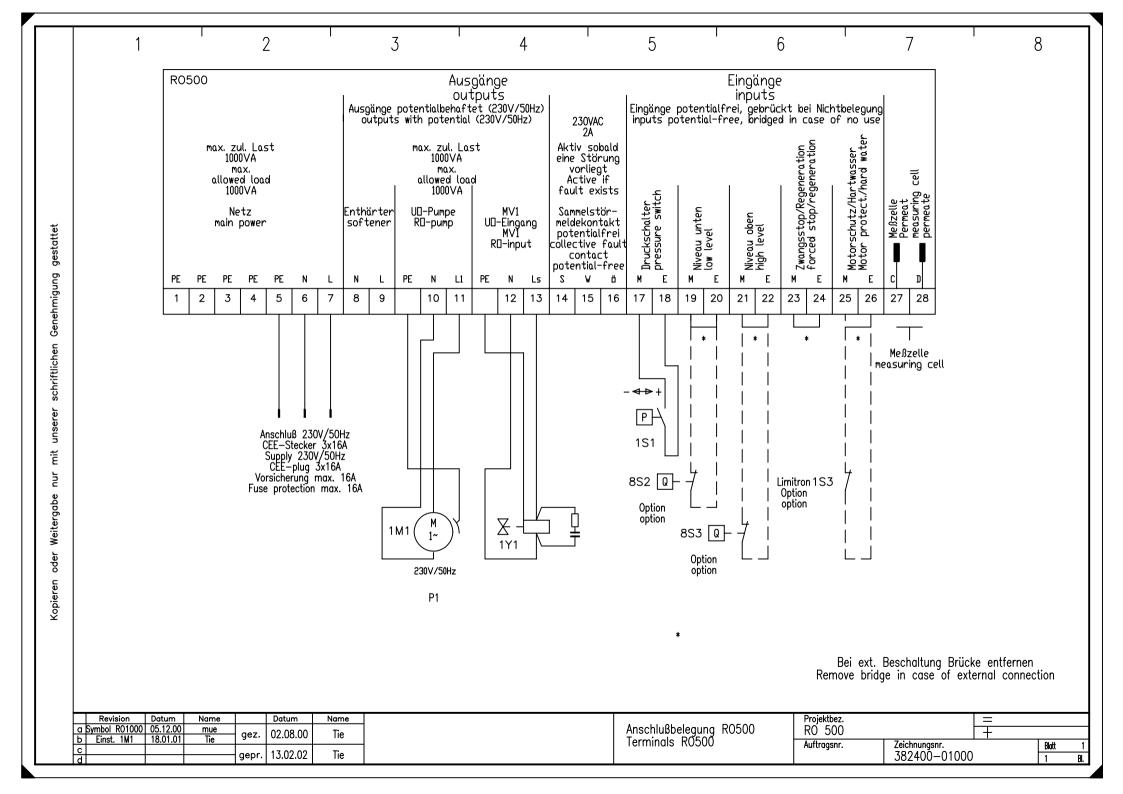

The pH value of the preserving solution is 12 or thereabouts. It should not be allowed to fall below this level.

Appendix


R+I flowchart with components and spare parts list


UO 100 combi D Code No.: 00420109		Component List				
P+I-No	Code-No	Description				
0F01		filter housing 10", 3/4"IG, blue cup filter cartridge, 10", 100 μm				
0Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, ¼"h, 0-10 bar				
0Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, ¼ ¹ h, 0-10 bar				
0V01	00 410 084	sample				
0X01		line separator				
0X02	00 360 039	softener HS-SK 621				
	00 330 049	filter housing 10", 3/4"IG, blue cup				
1F01		filter cartridge, 10", 5 µm				
1FI01		flowmeter concentrate, 60-640 l/h				
1FI02	00 580 021	flowmeter permeat, 60-640 l/h				
1P01	00 390 031	pump 2507 Ms				
	00 640 002	motor 0,55 kW				
1Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, ¼"h, 0-10 bar				
1Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, ¼"h, 0-10 bar				
1Pr03	00 600 012	pressure switch FF4-8, %"	-			
1Pr05	00 630 209	pressure gauge operation pressure, Ms, NG63, ¼"h, 0-25 bar	-			
1Pr06	00 630 209	pressure gauge concentrate pressure, Ms, NG63, ¼"h, 0-25 bar				
1Q02	00 100 024	conductivity measuring cell permeate				
1V01	00 410 095	solenoid valve, Ms, ½", DN13	-			
1V05	00 415 054	regulating valve - concentrate recirculation, needle valve VA, 1/4"				
1V06	00 415 054	concentrate regulating valve, needle valve VA, 1/4"				
1V07	00 410 084	sample				
1X01	00 400 003	vessel, GFK, 2540-1, 25 bar				
1701	00 395 142	Low pressure element				
1X02	00 370 038	hardness monitor Limitron ¾"				
	00 382 400	control with RO 500				
	382468 cleani					
1V10		ball valve PVC, DN15				
1V11	00 405 001	3 way-ball valve, DN10				
1V12	00 405 001	3 way-ball valve, DN10				
further op						
1RV02	00 580 009	check valve PVC, DN10, PN16				
1X03	00 382 284	colloid index measuring device				

UO 250 combi D Code-No. 00420084		Component List				
P+I-No	Code-No	Description				
0F01	00 330 049 00 335 070	filter housing 10", 3/4"IG, blue cup filter cartridge, 10", 100 μm				
0Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, ¼"h, 0-10 bar				
0Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, ¼"h, 0-10 bar				
0V01	00 410 084	sampling				
0X01	00 340 003	line separator				
0X02	00 360 039	softener HS-SK 621				
1F01	00 330 049	filter housing 10", 3/4"IG, blue cup				
	00 335 014	filter cartridge, 10", 5 μm				
1FI01	00 580 022	flowmeter concentrate, 20-250 l/h				
1Fl02	00 580 022	flowmeter permeat, 20-250 l/h				
1P01	00 390 031	pump 2507 Ms				
	00 640 002	motor 0,55 kW				
1Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, ¼"h, 0-10 bar				
1Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, ¼"h, 0-10 bar				
1Pr03	00 600 012	pressure switch FF4-8, 3/8"				
1Pr05	00 630 209	pressure gauge operation pressure, Ms, NG63, ¼"h, 0-25 bar				
1Pr06	00 630 209	pressure gauge pump pressure, Ms, NG63, ¼"h, 0-25 bar				
1Q02	00 100 024	conductivity measuring cell permeate				
1V01	00 410 095	solenoid valve, Ms, ½", DN13				
1V05	00 415 054	regulating valve - concentrate recirculation, needle valve VA, 1/4"				
1V06	00 415 054	concentrate regulating valve, needle valve VA, 1/4"				
1V07	00 410 084	sampling				
1X01	00 400 003	vessel, GFK, 2540-1, 25 bar				
1701	00 395 146	Low pressure element				
1X02	00 370 038	hardness monitor Limitron ¾"				
	00 382 400	control with RO 500				
option 003	882468 cleanir	ig set:				
1V10	00 580 098	ball valve PVC, DN15				
1V11	00 405 001	3 way-ball valve, DN10				
1V12	00 405 001	3 way-ball valve, DN10				
further opt						
1RV02	00 580 009	check valve PVC, DN10, PN16				
1X03	00 382 284	colloid index measuring device				


UO 300 combi D Code No.:00420118		Component List				
P+I-No	Code-No	Description				
0F01	00 330 049	filter housing 10", 3/4"IG, blue cup				
0101	00 335 070	filter cartridge, 10", 100 μm				
0Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, 1/4"h, 0-10 bar				
0Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, 1/4"h, 0-10 bar				
0V01	00 410 084	sample				
0X01	00 340 003	line separator				
0X02	00 360 039	softener HS-SK 621				
1F01	00 330 049	filter housing 10", 3/4"IG, blue cup				
IFUI	00 335 014	filter cartridge, 10", 5 µm				
1FI01	00 580 026	flowmeter concentrate, 40-400 l/h				
1FI02	00 580 026	flowmeter permeat, 40-400 l/h				
1P01	00 390 156	pump 2539 MS				
	00 640 011	motor 0,55 kW, 230V/50Hz				
1Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, 1/4"h, 0-10 bar				
1Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, 1/4"h, 0-10 bar				
1Pr03	00 600 012	pressure switch FF4-8, 3/8"				
1Pr05	00 630 209	pressure gauge operation pressure, Ms, NG63, 1/4"h, 0-25 bar				
1Pr06	00 630 209	pressure gauge concentrate pressure, Ms, NG63, 1/4"h, 0-25 bar				
1Q02	00 100 024	conductivity measuring cell permeate				
1V01	00 410 095	solenoid valve, Ms, 1/2", DN13				
1V05	00 415 054	regulating valve - concentrate recirculation, needle valve VA, 1/4"				
1V06	00 415 054	concentrate regulating valve, needle valve VA, 1/4"				
1V07	00 410 084	sample				
1RV01	00 410 026	check valve, Ms, 3/8"				
	00 400 015	vessel, GFK, 2540-1, 25 bar				
1X01	00 395 146	Low pressure element				
1X02	00 370 038	hardness monitor Limitron ³ / ₄ "				
	00 382 400	control with RO 500				
option 003	382468 cleanin					
1V10	00 580 098	ball valve PVC, DN15				
1V11	00 405 001	3 way-ball valve, DN10				
1V12	00 405 001	3 way-ball valve, DN10				
further op						
1RV02	00 580 009	check valve PVC, DN10, PN16				
1X03	00 382 284	colloid index measuring device				

UO 400 combi D Code-No. 00420090		Component List	
P+I-No	Code-No	Description	
0F01	00 330 049	filter housing 10", 3/4"IG, blue cup	
	00 335 070	filter cartridge, 10", 100 µm	_
0Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, ¼"h, 0-10 bar	_
0Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, ¼"h, 0-10 bar	_
0V01	00 410 084	sample	
0X01	00 340 003	line separator	
0X02	00 360 039	softener HS-SK 621	
1F01	00 330 049	filter housing 10", 3/4"IG, blue cup	
	00 335 014	filter cartridge, 10", 5 µm	
1FI01	00 580 033	flowmeter concentrate, 60-640 l/h	
1FI02	00 580 033	flowmeter permeate, 60-640 l/h	
	00 390 031	pump 2507 Ms	
	00 640 002	motor 0,55 kW	
1Pr01	00 630 006	pressure gauge filter inlet, Ms, NG63, ¼"h, 0-10 bar	
1Pr02	00 630 006	pressure gauge filter outlet, Ms, NG63, ¼"h, 0-10 bar	
1Pr03	00 600 012	pressure switch FF4-8, %"	
1Pr05	00 630 209	pressure gauge operation pressure, Ms, NG63, ¼"h, 0-25 bar	
1Pr06	00 630 209	pressure gauge pump pressure, Ms, NG63, ¼"h, 0-25 bar	
1Q02	00 100 024	conductivity measuring cell permeate	
1V01	00 410 095	solenoid valve, Ms, 1/2", DN13	
1V05	00 415 054	regulating valve - concentrate recirculation, needle valve VA, 1/4"	
1V06	00 415 054	concentrate regulating valve, needle valve VA, 1/4"	
1V07	00 410 084	sample	
1X01	00 400 015	vessel, GFK, 4040-1, 25 bar	
1701	00 395 146	Low pressure element	
1X02	00 370 038	hardness monitor Limitron ¾"	
	00 382 400	control with RO 500	
· · · · · ·	0382468 clean		1
1V10	00 580 098	ball valve PVC, DN15	
1V11	00 405 001	3 way-ball valve, DN10	
1V12	00 405 001	3 way-ball valve, DN10	
further o	ptionen:		
1RV02	00 580 009	check valve PVC, DN10, PN16	
1X03	00 382 284	colloid index measuring device	

Circuit diagram

Control system manual

RO 500 control system

1. Description of functions

normal operation regeneration (emergency shut-down) hard water (Limitron) disinfection intermittent flushing calibration emergency shut-down

2. Operating parameters

description of parameters status and malfunction signals

3. Terminal allocation

1. Description of functions

Normal operation

Following "**power-on**", the control system starts an initialization cycle with a duration of about two seconds.

During initialization, "88" is displayed and the LEDs are off.

The control system then switches over to normal operation, the display switches to operation "b0" and the green LED lights up.

If it is necessary to fill the tank because of the low level, i.e. both level switches are closed (the unit may also be only be equipped with one level switch: in this case, a jumper must be installed on the low level switch), the solenoid valve will open.

The water pressure is then checked by the pressure switch. If the pressure signal is not available after a preset time (**time_pressure_available**), an automatic shut down is initiated and "**E5**" is displayed.

If the pressure signal is received, the pump is started up after a preset time

(time_pressure_start-up) and the water conductivity measured is indicated.

This operational status is changed if the upper level switch closes, indicating that the tank is full. In this case, the pump is shut down, "b0" is displayed and the solenoid valve is closed again after a preset time (**time_displacement**).

If the pressure switch signals low pressure to the control unit with the pump running, the green LED flashes and "E3" is displayed until the pressure switch again signals the pressure required.

The control system then switches over to normal operation with the exception that the two signals "normal operation" and "E3" are displayed in succession.

If the conductivity exceeds the warning value for five minutes with the pump running, the green LED flashes and the conductivity is displayed alternately with "**E6**" until the conductivity falls below this value.

Normal operation then continues.

If the conductivity exceeds the conductivity alarm limit for five minutes with the pump running, a collective malfunction signal is initiated, the green LED flashes and the conductivity is displayed alternately with "E7".

If the alarm limit is exceeded for a further preset time (**time_cond**), the unit is automatically shut down and "**E7**" is displayed.

Malfunction signals are reset by switching the unit **ON** and **OFF**. The flashing green LED is then lit continuously.

Regeneration (emergency stop)

The unit can be said to "**regeneration**" or "**emergency stop**" by operating (opening) the appropriate switch. The pump is then shut down immediately and the solenoid valve is operated after a time delay of two seconds. The green LED continues to be lit and (**b1**) is displayed. If the switch is closed, the control unit is switched back to normal operation. This is the case if an individual water softening unit is installed upstream from the unit.

Hard water (Limitron)

If the "hard water" or "Limitron" switch is operated (opened), an emergency shut-down is initiated and "E2" is displayed

Disinfection (to be carried out only by specialist personnel)

To switch to the "disinfection" operating mode, press the button before switching the power on and keep the button pressed during initialization, while "**88**" is displayed. After five seconds, "**b3**" is displayed, the solenoid valve is switched on, a collective malfunction signal is initiated and the red LED starts to flash slowly. If you have released the button in the meantime, the pump will be started up after a further time delay of five seconds and the conductivity value will be displayed alternately with "**b3**".

To switch back to normal operation, press the push button again. The pump will be shut down immediately and the solenoid valve will be closed after two seconds, if applicable.

Caution: in this mode of operation, no safety functions are in operation. The unit must only be operated under close supervision. Make sure that the water pressure is correct in order to prevent damage to the pump.

Intermittent flushing

If the solenoid valve is switched off for a preset time in normal operation

(time_int_flush_start), in other words if the tank is still full, the control system will switch to "intermittent flushing". This is similar to normal operation except that the level switches have no effect and the objective is to fill the tank. "b2" is displayed and, after the pump has been started up, the conductivity value is displayed alternately with "b2". Intermittent flushing continues for a preset time (time_int_flush_run). When this time has elapsed, the pump is shut down immediately, the solenoid value is switched off after two seconds and the control system switches back to normal operation.

The intermittent flashing function can be deactivated by setting the preset time (time_int_flush_start) to 0.

Calibration (to be carried out only by specialist personnel)

To switch to the "calibration" mode, press the push button before switching the power on and keep the button pressed during initialization while "**88**" is displayed. After five seconds, "**b3**" is displayed, the solenoid valve is switched on, a collective malfunction signal is initiated and the red LED starts to flash slowly. The unit is switched to disinfection. If you keep the push button pressed for a further period of five seconds, the pump is switched on and the conductivity value is displayed alternately with "**C**". The green LED is also lit. Each time you press the button, the conductivity offset value is increased by 1 μ S/cm. When

you reach the offset + 20 μ S/cm, the offset will be switched to - 20 μ S/cm the next time you press the push button. Each time you press the button, the current conductivity value is displayed immediately and the current offset is saved. The offset is saved irrespective of whether mains power is available.

You can only end calibration operation by switching the power off.

It is only necessary to use the calibration function if the conductivity measuring cell is replaced.

Emergency shut-down

Emergency shut-down means that the pump is shut down immediately and the solenoid valve is switched off with a delay of two seconds. The corresponding malfunction signal "E" is displayed and the green LED flashes rapidly.

An emergency shut down can only be reset by switching the power off.

2. Operating parameters

Parameter	Resolution	Lim	nits	Settings
		min.	max.	set by manufacturer
TIME_PRESSURE_AVAILABLE	0.1 sec.	0.1 sec.	9.9 sec.	9.9 sec.
TIME_PRESSURE_STARTUP	0.1 sec.	0.1 sec.	9.9 sec.	9.9 sec.
TIME_DISPLACEMENT	1.0 sec.	1.0 sec.	250 sec.	60 sec.
CONDLIM	0.5 µS/cm	1 µS/cm	99 µS/cm	50 µS/cm
CONDWARN	0.5 µS/cm	1 µS/cm	99 µS/cm	40 µS/cm
TIME_COND	1.0 min.	1.0 min.	250 min.	5 min.
TIME_PRESSURELOW	0.1 sec.	0.1 sec.	9.9 sec.	1.0 sec.
TIME_INT_FLUSH_START	1.0 h	1.0 h	250 h.	24 h
TIME_INT_FLUSH_RUN	1.0 min.	1.0 min.	99 min.	15 min.

Operating parameters can only be programmed by the manufacturer!

Parameters which are set to 0 are disabled.

Description of parameters

TIME_PRESSURE_AVAILABLE	Time from switching on valve to malfunction signal "E5".
TIME_PRESSURE_STARTUP	Time from pressure detection (pressure switch ON to pump start-up.
TIME_DISPLACEMENT	Time from pump shut-down to switching off solenoid valve
CONDLIM	Conductivity limit at which malfunction signal "E7" is displayed after a delay of 5 min., alternately with the conductivity value.
CONDWARN	Conductivity limit at which warning "E6" is displayed after a delay of 5 min., alternately with the conductivity value.
TIME_COND	Time between exceeding conductivity limit and shut- down of unit with continuous "E7" signal.
TIME_PRESSURELOW	Time during pump operation before malfunction "E3" (low pressure) is signalled with the pressure switch off.
TIME_INT_FLUSH_START	Time before intermittent flushing is started with the solenoid valve off (tank full).
TIME_INT_FLUSH_RUN	Duration of intermittent flushing programme.

2. Status and malfunction signals

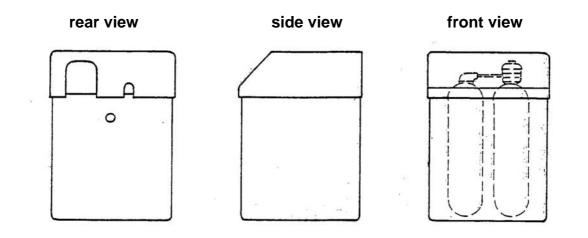
Signal	Description						
88	signal during initialization.						
b0	normal operation, "tank full" if the pump is not switched on (normally when the tank is full						
b1	"emergency stop/regeneration"						
b2 running	"intermittent flushing" displayed alternately with the conductivity value when the pump is						
b3	''disinfection'' displayed alternately with the conductivity value when the pump is running						
С	"calibration" displayed alternately with the conductivity value						
E2	"hard water" or Limitron emergency shut-down, if the appropriate switch is operated						
E3	malfunction signal if no pressure is measured for a certain time with the pump running. "low pressure"						
E4	"low pressure"						
E5	" low pressure " signal if no pressure is measured for a preset time after switching on the solenoid valve.						
E6	"conductivity warning" signal if the conductivity warning limit is exceeded for 5 minutes; displayed alternately with other operating signals						
E7	"conductivity alarm" signal if the conductivity alarm limit is exceeded for 5 minutes; displayed alternately with other operating signals After a further time delay, the unit is shut down and this signal is displayed continuously.						

3. Terminal allocation

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
PE	PE	PE	PE	PE	Ν	L1	Ν	L1	Ν	L1	Ν	L1	NO	С	NC												
					ains		SO		pum		valv			STC)	Ρ	S	LL	EV	HL	EV	RE	EG	M	TC	со	nd.
				23	30V		23	0V	23	0V	23	0V														sen	sor

x 1	PE	earth
x 2	PE	earth
x 3	PE	earth
x 4	PE	earth
x 5	PE	230V AC power supply, earth
x 6	N	230V AC power supply, neutral
x 7	L1	230V AC power supply, phase conductor 1
x 8	N	230V AC power supply for softener, neutral
x 9	L1	230V AC power supply, phase conductor 1 with 6.3A slow fuse
x 10	N	pump motor P1, neutral
x 11	P1	pump motor P1, normally open contact with 6.3A slow fuse
x 12	N	solenoid valve MV1, neutral
x 13	MV1	solenoid valve MV1 normally open contact with 6.3A slow fuse 230V/
x 14	STO NO	collective malfunction signal contact ZLT, 230V AC, 2A, normally open – floating
x 15	STO C	collective malfunction signal contact ZLT, 230V AC, 2A, changeover contact - floating
x 16	STO NC	collective malfunction signal contact ZLT, 230V AC, 2A, normally closed, floating
x 17	PS	pressure switch input 24V DC, 10mA
x 18	PS earth	pressure switch -earth
x 19	LLEV	low level switch input 24V DC, 10mA
x 20	LLEV earth	low level switch - earth
x 21	HLEV	high level switch input 24V DC, 10mA
x 22	HLEV earth	high level switch - earth
x 23	REG	regeneration (emergency stop) - input 24V DC, 10mA
x 24	REG earth	regeneration (emergency stop) – earth
x 25	МОТ	motor circuit breaker (hard water, Limitron)- input 24V DC, 10mA
x 26	MOT earth	motor circuit breaker (hard water, Limitron)- input
x 27	COND sensor	conductivity sensor input
x 28	COND sensor earth	conductivity sensor earth

Operating Instructions for Softener


SoftenerType HS SK

Fullyuatomatic duplex unit with water meter control, for the softening of clear, iron free and manganese-free drinking watr by means of cation ex change.

Corrosion-proof version with central control valve mounted on top, brine tank with brine valve, and cover.

Regeneration is carried out in the counter-current method resulting in very low salt consumption.

The unit needs no electricity.

Technical Data		613	618	621
flow rate at 1,2 bar pressure loss	m³/ h	1,2	1,3	1,5
capacity at 20° dH	m³/ Reg	0,5	0,6	0,8
salt consumption	kg/ Reg	0,5	0,75	1
brine reserve	kg	25	27	36
operation pressure min./ max.	bar	2,5/7	2,5/7	2,5/7
max. water temperature	°C	30	30	30
max. ambient temperature	°C	40	40	40
time of regeneration	min.	11	11	11
water connection	R	3⁄4"	3⁄4"	3⁄4"
connection rinse water	R	1⁄2"	1⁄2"	1⁄2"
dimensions: height	mm	530	700	775
width	mm	360	360	360
depth	mm	360	360	360
code-no:		360 001	360 038	360 039

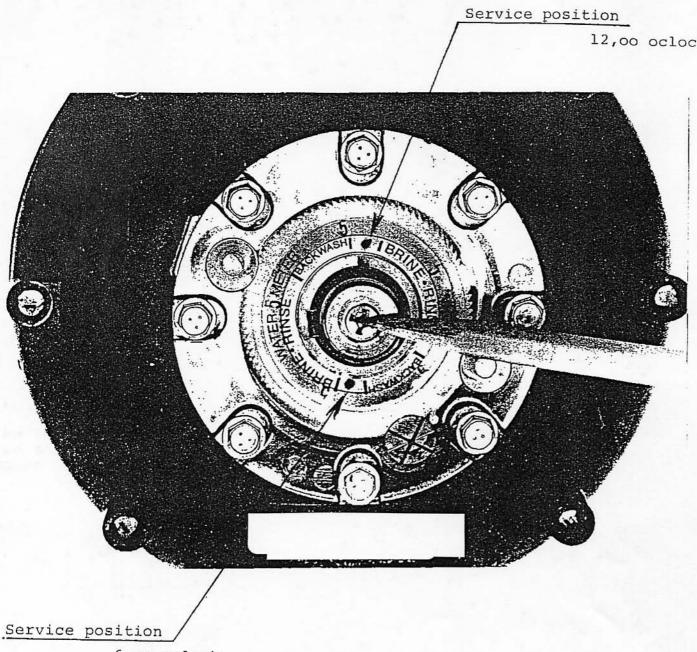
Technical Data HS SK 621

tanks:	6x21" (SFC) c	composite
flow rate:	maximum continously	
pressure:	minimum maximum	2,5 bar 7,0 bar
temperature:	max.	30°C
meter gearing:	2-1-5-4 (600	gallons/2280 litres)
regeneration garing:	2-2-2-2 (1I/m	inutes)
salt consumption:	ca. 40 litres/r	egeneration
regeneratin:	downflow	
service:	upflow	

disc no.:	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
dH°	4	8	11	15	19	23	26	30
I/regeneration	2280	1140	760	570	456	380	325	285

When using a *LOW FLOW METER NOZZLE* the capacity between regenerations will be reduced by 50%.

The hardness (dH°) will be doubbled.


Start up

When you have completed installation, the tanks must be filled with water and the unit started as follows:

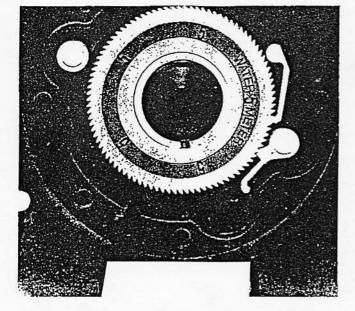
- 1 Inlet-outlet and bypassvives must be closed.
- 2 To allow tanks ti be filled with water <u>slowly</u>, open inletvalve a fraction.
- In order to rinse and air the tanks, place the black dot in the "Backwash" position by pressing the center of the cap and turning it with a phillips scewdriver. (The black dot is interchanged with a diminutive nob model HT).
- 4 Service position is obtained by placing the black dot on 6-or 12 o'clock.
- 5 Open inlet-and outletvalve completely. Keep bypassvalve closed and check that the brinevalve stops waterflow, at the proper water level.
- 6 Add <u>SALTTABLETS</u> until water is covered. (Do not use rock salt).
- 7 The unit is now in operation and produces soft water.

Maintenance

- 1 Sufficient salttablets must always be available in the tank.
- 2 Salttablets must under no circumstances enter the brinewell.
- **3** Use salttablets, do not use rock salt.
- 4 Inlet-and outletvalves must be open at all times. Bypassvalve must be completely closed.
- 5 Check water occasionally for proper performence of unit.
- 6 In case of malfunction please call your serviceorganisation.

6,00 oclock

Depress the demand override actuator with a phillips screwdriver. Turn clockwise until actuator makes contact with the black dot on control disc. Advance the black dot until it is in position "BACK-WASH" - in order to rinse and air the tanks.


NON-ELECTRIC WATER CONDITIONING EQUIPMENT

CHANGING WATER METER DISC

The only adjustment necessary when installing a Water Conditioner is to install the proper Water Meter Disc which corresponds to the compensated hardness of the water. The following illustrations show how to perform this. Before attempting this be sure to depressurize unit.

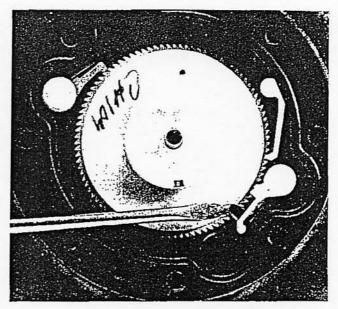

Remove 8 screws and lift off cap

FIG. 1

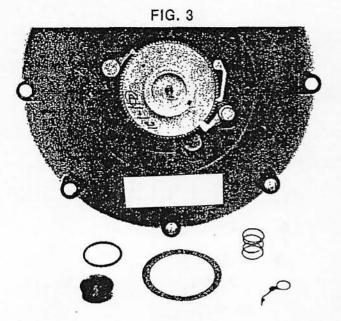
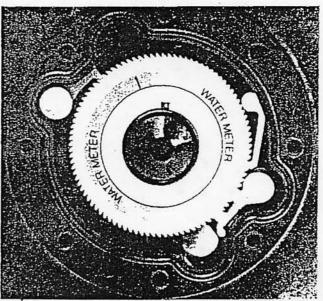
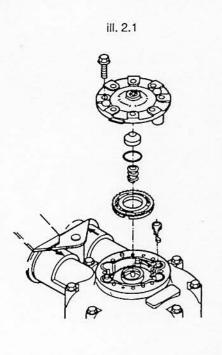
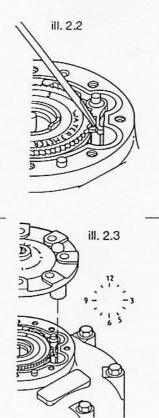

Remove balance piston, spring and O-ring that are located directly in the center. Lift out meter disc.

FIG. 2

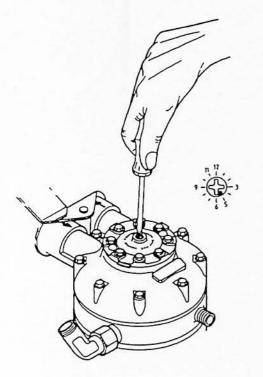


Lift out meter drive pawl as shown with small screwdriver by sliding up shaft.


FIG. 4



The cap area will look like this once all the parts necessary to remove have been removed.


Install the new meter disc, O-ring, spring and balance piston in that order. If meter disc is not sitting flat on the control disc, rotate until it seats itself. Then install the meter drive pawl.

1.1 Changing the hardness section disc

- Unscrew cover of control head (hexagon screws SW AF 1/4").
- Take out plastic mushroom with O-ring and spring.
- Exchange hardness section disc (WA-TER-METER). Take care that the old hardness section disc is taken out carefully and the remaining parts of the control device are left in their functioning positions.
- When introducing the new hardness section disc press the upper detent pawl with a screw driver to the side. See ill. 2.2.
- Reinstall spring and plastic mushroom with O-ring and screw on cover. The projecting pivot underneath the cover has to be in position 5.00 o'clock. See ill. 2.3.

2. Deaeration of Softener

- With closed drain slowly open water inlet.
- Press hexagon screw in the middle of the control head downwards with a screw driver (so that the control plate follows) and turn in clockwise direction so far until the small tappet of the screw is positioned at 5.00 o'clock (or 11.00 o'clock). Air and water have to penetrate from the regenerating drain hose.
- Wait until only water and no more air penetrates from the regenerating drain hose. Now the first cartridge is deaerated.
- Turn hexagon screw in the same way farther to position 11.00 o'clock (or 5.00 o'clock) and deaerate the second cartridge in the same way.
- Turn hexagon screw to position 12.00 o'clock (or 6.00 o'clock). No more water may penetrate.

4. Filling with regenerating salt

Only use unadulterated boiled (granulation 8 to 15 mm, or as tablets) which is marked as regenerating salt for softeners.

- Fill regenerating salt into the container.

For the first filling a 25 kg packing has to be used. For further operation it is sufficient to fill in so much salt that the water level (height approx. 150 mm) is always covered.

During the first filling of salt excess water may drain over the safety drain.

Operating Instructions for Hardness Monitor

Limitron

Automatic hardness monitoring unit for installation after water softeners in connection with the RO controller.

The unit is designed for continuously monitoring the soft water quality without consumption

of neither chemicals nor water. The 'hard water' signal is displayed on the control panel of the

reverse osmosis unit and transmitted to a floating changeover contact for collective malfunction alarm.

Design features:

- differential pressure valve
- hardness sensor on a resin expansion/shrinkage base
- replacement sensor
- shut-off valves
- connecting tubes
- transmitter with Reed contact

Technical Data:

flow rate	min. max.	l/h	25 2500	200 7000	500 12000	1500 18000	3000 25000			
nominal width (connection)			3⁄4"	1"	1 1⁄4"	1 1⁄2"	2"			
pressure loss m	bar			0,2						
change-over co	ntact			floating - max.load 50V DC/AC 0,15A 3W						
feed water pres max.	sure	bar		6						
feed water temperature min./max.				5/35						
ambient temperature ma	ах	°C	40							
Item-No:			370038	370069	370044	370070	370063			

Replacement Par	ts	
Item no.	370031	limitron hardness sensor
Item no.	370034	<i>limitron</i> head

Mode of Operation

The differential pressure valve which is installed in the soft water line creates a slight difference in the water pressure. Therefore part of the water passes through a bypass and the hardness sensor which is mounted there before return to the main stream.

In case of hard water leakage the sensor will be charged which makes the special resin contained therein shrink. A potential-free contact is used to shut-off the reverse osmosis unit.

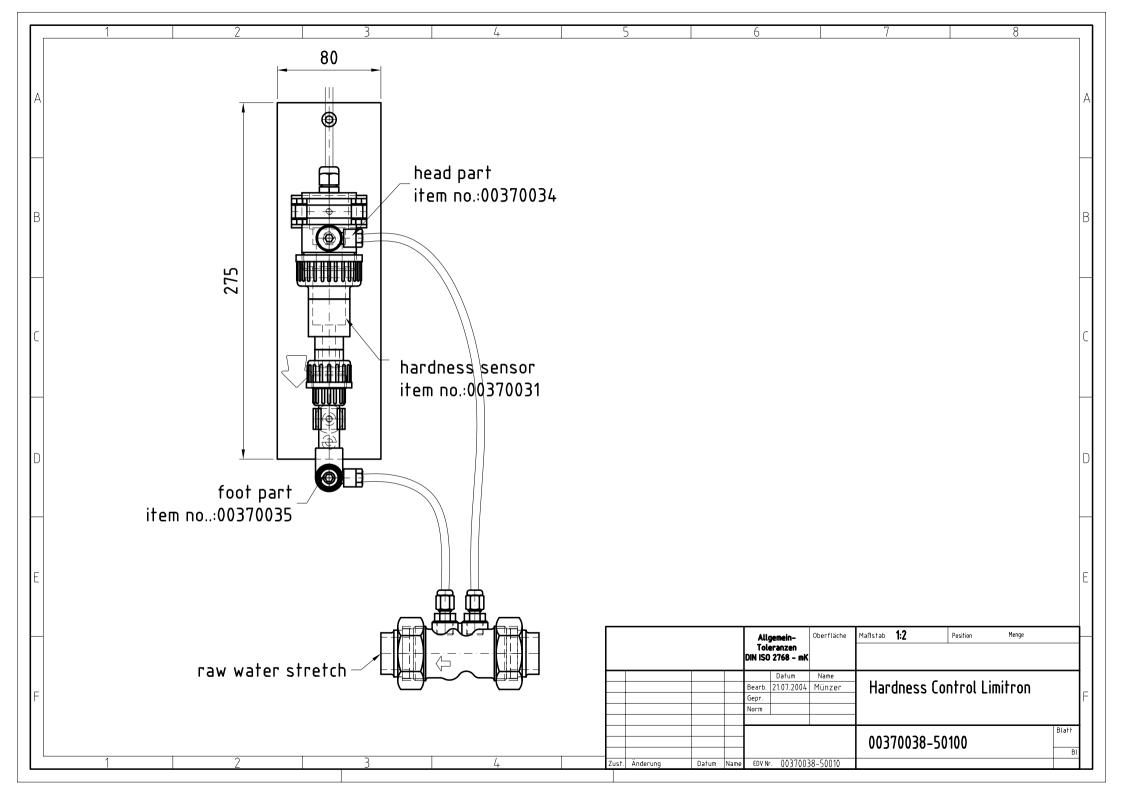
Mounting

- Install hose and fittings in soft water line
- Observe direction of water flow!
- Mount PVC panel vertically to wall nearby.
- Connect hoses as shown on enclosed drawing.

Electrical connection

Control RO 500:	wire white and green terminal 25 and 26.
- Control RO 1000:	wire white and green terminal 25 and 26.
Control RO 2000:	wire white and green terminal 39 and 40.
Control RO 5000:	wire white and green terminal 43 and 44.

Start-Up


- Make sure that soft water is available.
- Slowly open both shut-off valves and check that joints do not leak.

What to do in case of 'hard water' alarm

- Close shut-off valves (angle valves) at top and bottom.
- Unscrew and exchange sensor.
- Before re-start make sure that soft water is available. Do not open inlet valve to *limitron* if soft water is not available.
- Attention: The replacement sensor must be rinsed with soft water before installation. It should be kept in soft water or permeate during storage.

Maintenance:

Sensor must be changed one time a year!

